DOI QR코드

DOI QR Code

High-Performance Amorphous Multilayered ZnO-SnO2 Heterostructure Thin-Film Transistors: Fabrication and Characteristics

  • Lee, Su-Jae (Information & Communications, Core Technology Research Laboratory, ETRI) ;
  • Hwang, Chi-Sun (Information & Communications, Core Technology Research Laboratory, ETRI) ;
  • Pi, Jae-Eun (Information & Communications, Core Technology Research Laboratory, ETRI) ;
  • Yang, Jong-Heon (Information & Communications, Core Technology Research Laboratory, ETRI) ;
  • Byun, Chun-Won (Information & Communications, Core Technology Research Laboratory, ETRI) ;
  • Chu, Hye Yong (Information & Communications, Core Technology Research Laboratory, ETRI) ;
  • Cho, Kyoung-Ik (Information & Communications, Core Technology Research Laboratory, ETRI) ;
  • Cho, Sung Haeng (Information & Communications, Core Technology Research Laboratory, ETRI)
  • Received : 2014.06.22
  • Accepted : 2015.08.10
  • Published : 2015.12.01

Abstract

Multilayered ZnO-$SnO_2$ heterostructure thin films consisting of ZnO and $SnO_2$ layers are produced by alternating the pulsed laser ablation of ZnO and $SnO_2$ targets, and their structural and field-effect electronic transport properties are investigated as a function of the thickness of the ZnO and $SnO_2$ layers. The performance parameters of amorphous multilayered ZnO-$SnO_2$ heterostructure thin-film transistors (TFTs) are highly dependent on the thickness of the ZnO and $SnO_2$ layers. A highest electron mobility of $43cm^2/V{\cdot}s$, a low subthreshold swing of a 0.22 V/dec, a threshold voltage of 1 V, and a high drain current on-to-off ratio of $10^{10}$ are obtained for the amorphous multilayered ZnO(1.5nm)-$SnO_2$(1.5 nm) heterostructure TFTs, which is adequate for the operation of next-generation microelectronic devices. These results are presumed to be due to the unique electronic structure of amorphous multilayered ZnO-$SnO_2$ heterostructure film consisting of ZnO, $SnO_2$, and ZnO-$SnO_2$ interface layers.

Keywords

References

  1. K. Nomura et al., "Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors," Nature, vol. 432, Nov. 2004, pp. 488-492. https://doi.org/10.1038/nature03090
  2. E. Fortunato et al., "Amorphous IZO TTFTs with Saturation Mobility Exceeding 100 $cm^2$/V.s," Physica Status Solidi (RRL), vol. 1, no. 1, Jan. 2007, pp. R34-R37. https://doi.org/10.1002/pssr.200600049
  3. H.Q. Chiang et al., "High Mobility Transparent Thin-Film Transistors with Amorphous Zinc Tin Oxide Channel Layer," Appl. Physics Lett., vol. 86, no. 1, 2005, pp. 013503-1-013503-3. https://doi.org/10.1063/1.1843286
  4. J. Heo, S.B. Kim, and R.G. Gordon, "Atomic Layer Deposited Zinc Tin Oxide Channel for Amorophous Oxide Thin Film Transistors," Appl. Physics Lett, vol. 101, 2012, pp. 113507-1-113507-5. https://doi.org/10.1063/1.4752727
  5. T. Kamiya, K. Nomura, and H. Sosono, "Present Status of Amorphous In-Ga-Zn-O Thin Film Transistors," Sci. Technol. Adv. Mater., vol. 11, no. 4, Sept. 2010, pp. 044305-1-044305-23. https://doi.org/10.1088/1468-6996/11/4/044305
  6. W.S. Cheong, J. Park, and J.-H. Shin, "Effect of Oxygen Binding Energy on the Stability of Indium-Gallium-Zinc-Oxide Thin-Film Transistors," ETRI J., vol. 34, no. 6, Dec. 2012, pp. 966-969. https://doi.org/10.4218/etrij.12.0212.0232
  7. J.F. Wager, "Flat-Panel-Display Backplanes: LTPS or IGZO for AMLCDs or AMOLED Displays?" Inf. Display, vol. 30, no. 2, Mar. 2014, pp. 26-29.
  8. A. Ohtomo and H.Y. Hwang, "A High-Mobility Electron Gas at the $LaAlO_3/SrTiO_3$ Heterointerface," Nature, vol. 427, Jan. 2004, pp. 423-426. https://doi.org/10.1038/nature02308
  9. K. Koike et al., "Characteristics of a $Zn_{0.7}Mg_{0.3}O/ZnO$ Heterostructure Field-Effect Transistor Grown on Sapphire Substrate by Molecular-Beam Epitaxy," Appl. Physics Lett., vol. 87, no. 11, 2005, pp.112106-1-112106-3. https://doi.org/10.1063/1.2045558
  10. H. Tampo et al., "Polarization-Induced Two-Dimensional Electron Gases in ZnMgO/ZnO Heterostructures," Appl. Physics Lett., vol. 93, no. 20, 2008, pp. 202104-1-202104-3. https://doi.org/10.1063/1.3028338
  11. M. Nakano et al., "Electronic-Field Control of Two-Dimensional Electrons in Polymer-Gated-Oxide Semiconductor Heterostructures," Adv. Mater., vol. 22, no. 8, Apr. 2010, pp. 876-879. https://doi.org/10.1002/adma.200902162
  12. H.A. Chin et al., "Two-Dimensional Electron Gases in Polycrystalline MgZnO/ZnO Heterostructures Grown by rf-Sputtering Processes," J. Appl. Physics, vol. 108, no. 5, 2010, pp. 054503-1-054503-4. https://doi.org/10.1063/1.3475500
  13. S.J. Lee et al., "Characterization of ZnO-$SnO_2$ Nanocomposite Thin Films Deposited by Pulsed Laser Ablation and their Field Effect Electronic Properties," Mater. Lett., vol. 122, May 2014, pp. 94-97. https://doi.org/10.1016/j.matlet.2014.01.134
  14. W.B. Jackson, R.L. Hoffman, and G.S. Herman, "High-Performance Flexible Zinc Tin Oxide Field-Effect Transistors," J. Appl. Physics Lett., vol. 87, 2005, pp. 193503-1-193503-3. https://doi.org/10.1063/1.2120895
  15. M.G. McDowell, R.J. Sanderson, and I.G. Hill, "Combinational Study of Zinc Tin Oxide Thin-Film Transistors," J. Appl. Physics Lett., vol. 92, 2008, pp. 013502-1-013502-3. https://doi.org/10.1063/1.2828862
  16. D.W. Greve, "Field Effect Devices and Application: Devices for Portable, Low Power, and Imaging Systems," 1st ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 1998.
  17. R. Martins et al., "Role of Order and Disorder on the Electronic Performance of Oxide Semiconductor Thin Film Transistors," J. Appl. Physics, vol. 101, no. 4, 2007, pp. 044505-1-044505-7. https://doi.org/10.1063/1.2495754
  18. M.G. Yun et al., "Effects of Channel Thickness on Electrical Properties and Stability of Zinc Tin Oxide Thin-Film Transistors," J. Physics D: Appl. Physics, vol. 46, no. 47, Oct. 2013, pp. 475106-1-475106-5. https://doi.org/10.1088/0022-3727/46/47/475106

Cited by

  1. High mobility polycrystalline indium oxide thin-film transistors by means of plasma-enhanced atomic layer deposition vol.4, pp.28, 2015, https://doi.org/10.1039/c6tc00580b
  2. Solution-processed indium-free ZnO/SnO2 bilayer heterostructures as a low-temperature route to high-performance metal oxide thin-film transistors with excellent stabilities vol.4, pp.47, 2016, https://doi.org/10.1039/c6tc03977d
  3. Low-temperature, solution-processed indium-oxide thin-film transistors fabricated by using an ultraviolet-ozone treatment vol.68, pp.8, 2016, https://doi.org/10.3938/jkps.68.971
  4. High-Performance, Solution-Processed Indium-Oxide TFTs Using Rapid Flash Lamp Annealing vol.37, pp.5, 2016, https://doi.org/10.1109/led.2016.2545692
  5. Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition vol.8, pp.49, 2015, https://doi.org/10.1021/acsami.6b11774
  6. Review of recent advances in flexible oxide semiconductor thin-film transistors vol.18, pp.4, 2015, https://doi.org/10.1080/15980316.2017.1385544
  7. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes vol.39, pp.1, 2015, https://doi.org/10.1088/1674-4926/39/1/011008
  8. Stacked indium oxide/zinc oxide heterostructures as semiconductors in thin film transistor devices: a case study using atomic layer deposition vol.6, pp.3, 2015, https://doi.org/10.1039/c7tc03724d
  9. Optical and electrical properties of thin-film hetero-structures of the In2O3-ZnO system vol.6, pp.8, 2019, https://doi.org/10.1088/2053-1591/ab2721
  10. Photopolymerized Films with ZnO and Doped ZnO Particles Used as Efficient Photocatalysts in Malachite Green Dye Decomposition vol.10, pp.6, 2015, https://doi.org/10.3390/app10061954
  11. Electrical Properties of Thin In2O3/C Films vol.56, pp.4, 2015, https://doi.org/10.1134/s0020168520040019
  12. Effect of Vacuum Heat Treatment on the Structure and Electrical Properties of the Multilayer In2O3/SnO2 System vol.84, pp.9, 2015, https://doi.org/10.3103/s1062873820090397