References
- Ghouri ZK, Barakat NAM, Obaid M, Lee JH, Kim HY. Co/CeO2-decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline medium. Ceram Int, 41, 2271 (2015). http://dx.doi.org/10.1016/j.ceramint.2014.10.031.
- Ghouri ZK, Akhtar MS, Zahoor A, Barakat NAM, Han W, Park M, Pant B, Saud PS, Lee CH, Kim HY. High-efficiency super capacitors based on hetero-structured α-MnO2 nanorods. J Alloys Compd, 642, 210 (2015). http://dx.doi.org/10.1016/j.jallcom.2015.04.082.
- Ghouri ZK, Barakat NAM, Park M, Kim BS, Kim HY. Synthesis and characterization of Co/SrCO3 nanorods-decorated carbon nanofibers as novel electrocatalyst for methanol oxidation in alkaline medium. Ceram Int, 41, 6575 (2015). http://dx.doi.org/10.1016/j.ceramint.2015.01.103.
- Ghouri ZK, Barakat NAM, Kim HY. Synthesis and electrochemical properties of MnO2 and co-decorated graphene as novel nanocomposite for electrochemical super capacitors application. Energy Environ Focus, 4, 34 (2015). http://dx.doi.org/10.1166/eef.2015.1136.
- Ghouri ZK, Barakat NAM, Alam AM, Park M, Han TH, Kim HY. Facile synthesis of Fe/CeO2-doped CNFs and their capacitance behavior. Int J Electrochem Sci, 10, 2064 (2015).
- Zhang M, Jin X, Zhao Q. Preparation of N-doped activated carbons for electric double-layer capacitors from waste fiberboard by K2CO3 activation. New Carbon Mater, 29, 89 (2014). http://dx.doi.org/10.1016/s1872-5805(14)60128-1.
- Burke A. Ultracapacitors: why, how, and where is the technology. J Power Sources, 91, 37 (2000). http://dx.doi.org/10.1016/s0378-7753(00)00485-7.
- Yoda S, Ishihara K. The advent of battery-based societies and the global environment in the 21st century. J Power Sources, 81-82, 162 (1999). http://dx.doi.org/10.1016/s0378-7753(98)00210-9.
- Becker HI. Low voltage electrolytic capacitor. US Patent 2800616 (1957).
- Hu CC, Chang KH, Lin MC, Wu YT. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett, 6, 2690 (2006). http://dx.doi.org/10.1021/nl061576a.
- Barakat NAM, Kanjwal MA, Chronakis IS, Kim HY. Influence of temperature on the photodegradation process using Ag-doped TiO2 nanostructures: negative impact with the nanofibers. J Mol Catal A Chem, 336, 333 (2013). http://dx.doi.org/10.1016/j.molcata.2012.10.012.
- Barakat NAM, Abdelkareem MA, El-Newehy M, Kim HY. Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: an effective impact toward methanol electrooxidation. Nanoscale Res Lett, 8, 1 (2013). http://dx.doi.org/10.1186/1556-276x-8-402.
- Liu T, Gu S, Zhang Y, Ren J. Fabrication and characterization of carbon nanofibers with a multiple tubular porous structure via electrospinning. J Polym Res, 19, 1 (2012). http://dx.doi.org/10.1007/s10965-012-9882-9.
- Yousef A, Barakat NAM, Amna T, Abdelkareem MA, Unnithan AR, Al-Deyab SS, Kim HY. Activated carbon/silver-doped polyurethane electrospun nanofibers: single mat for different pollutants treatment. Macromol Res, 20, 1243 (2012). http://dx.doi.org/10.1007/s13233-012-0183-2.
- Barakat NAM, Akhtar MS, Yousef A, El-Newehy M, Kim HY. Pd-Co-doped carbon nanofibers with photoactivity as effective counter electrodes for DSSCs. Chem Eng J, 211-212, 9 (2012). http://dx.doi.org/10.1016/j.cej.2012.09.040.
- Tao XY, Zhang XB, Zhang L, Cheng JP, Liu F, Luo JH, Luo ZQ, Geise HJ. Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors. Carbon, 44, 1425 (2006). http://dx.doi.org/10.1016/j.carbon.2005.11.024.
- Tsuji M, Kubokawa M, Yano R, Miyamae N, Tsuji T, Jun MS, Hong S, Lim S, Yoon SH, Mochida I. Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave-polyol method and their application to fuel cells. Langmuir, 23, 387 (2007). http://dx.doi.org/10.1021/la062223u.
- Prasad KR, Miura N. Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J Power Sources, 135, 354 (2004). http://dx.doi.org/10.1016/j.jpowsour.2004.04.005.
- Hosono E, Fujihara S, Honma I, Ichihara M, Zhou H. Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. J Power Sources, 158, 779 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.09.052.
- Wang Y, Xia Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim Acta, 51, 3223 (2006). http://dx.doi.org/10.1016/j.electacta.2005.09.013.
- Prasad KR, Miura N. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem Commun, 6, 1004 (2004). http://dx.doi.org/10.1016/j.elecom.2004.07.017.
- Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater, 16, 3184 (2004). http://dx.doi.org/10.1021/cm049649j.
- Nayak PK, Munichandraiah N. Cobalt hydroxide as a capacitor material: tuning its potential window. J Electrochem Soc, 155, A855 (2008). http://dx.doi.org/10.1149/1.2977976.
- Barakat NAM, Abdelkareem MA, Kim HY. Ethanol electro-oxidation using cadmium-doped cobalt/carbon nanoparticles as novel non precious electrocatalyst. Appl Catal A Gen, 455, 193 (2013).http://dx.doi.org/10.1016/j.apcata.2013.02.004.
- Stoukides M. Solid-electrolyte membrane reactors: current experience and future outlook. Catal Rev, 42, 1 (2000). http://dx.doi.org/10.1081/cr-100100259.
- Yin X, Hong L, Liu ZL. Oxygen permeation through the LSCO-80/CeO2 asymmetric tubular membrane reactor. J Memb Sci, 268, 2 (2006). http://dx.doi.org/10.1016/j.memsci.2005.06.005.
- Fu Q, Weber A, Flytzani-Stephanopoulos M. Nanostructured Au-CeO2 catalysts for low-temperature water–gas shift. Catal Lett, 77, 87 (2001). http://dx.doi.org/10.1023/A:1012666128812.
- Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 301, 935 (2003). http://dx.doi.org/10.1126/science.1085721.
- Beie HJ, Gnörich A. Oxygen gas sensors based on CeO2 thick and thin films. Sens Actuators B Chem, 4, 393 (1991). http://dx.doi.org/10.1016/0925-4005(91)80141-6.
- Jasinski P, Suzuki T, Anderson HU. Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B Chem, 95, 73 (2003). http://dx.doi.org/10.1016/s0925-4005(03)00407-6.
- Feng X, Sayle DC, Wang ZL, Paras MS, Santora B, Sutorik AC, Sayle TXT, Yang Y, Ding Y, Wang X, Her YS. Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science, 312, 1504 (2006). http://dx.doi.org/10.1126/science.1125767.
- Armini S, De Messemaeker J, Whelan CM, Moinpour M, Maex K. Composite polymer core–ceria shell abrasive particles during oxide cmp: a defectivity study. J Electrochem Soc, 155, H653 (2008). http://dx.doi.org/10.1149/1.2949085.
- Steele BCH. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500℃. Solid State Ionics, 129, 95 (2000). http://dx.doi.org/10.1016/s0167-2738(99)00319-7.
- Park S, Vohs JM, Gorte RJ. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 404, 265 (2000). http://dx.doi.org/10.1038/35005040.
- Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem, 14, 1125 (2010). http://dx.doi.org/10.1007/s10008-009-0932-0.
- Sun C, Stimming U. Recent anode advances in solid oxide fuel cells. J Power Sources, 171, 247 (2007). http://dx.doi.org/10.1016/j.jpowsour.2007.06.086.
- Xu B, Hou S, Zhang F, Cao G, Chu M, Yang Y. Nitrogen-doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors. J Electroanal Chem, 712, 146 (2014). http://dx.doi.org/10.1016/j.jelechem.2013.11.020.
- Mehmani A, Prodanović M. The effect of microporosity on transport properties in porous media. Adv Water Resour, 63, 104 (2014). http://dx.doi.org/10.1016/j.advwatres.2013.10.009.
- Zou L, Li L, Song H, Morris G. Using mesoporous carbon electrodes for brackish water desalination. Water Res, 42, 2340 (2008). http://dx.doi.org/10.1016/j.watres.2007.12.022.