참고문헌
- 교육과학기술부(2011). 수학과 교육과정. (교육과학기술부 고시 제 2011-361호 [별책8]).
- 김자경 (2005). van Hieles의 기하 학습 사고 수준 이론을 적용한 도형 학습이 합동 변환의 이해력과 기하 수준 변화에 미치는 영향, 이화여자대학교 석사학위논문.
- 김정학(1971). 도형의 함수적인 고찰, 논문집, 4, 111-128.
- 박연정(2006). 고등학교 교육과정에서 도형의 변환에 대한 연구, 서울시립대학교 석사학위논문.
-
박혜숙, 김서령, 김완순(2005). 수학적 개념의 발생적 분해의 적용에 대하여 - 추상대수학에서의
$Z_n$ 의 경우 -. 수학교육, 44(4), 547-563. - 백용배(1995). 기하학개론. 서울: 교학연구사.
- 손홍찬(2011). 우리나라 수학교육에서 공학 활용의 역사와 현황. 학교수학, 13(3), 525-542.
- 송석준, 박종국(1998). 고등학교 교육과정에서 도형의 변환에 대한 지도내용 분석 및 개선 방안, 과학교육, 15, 151-168.
- 안웅용(1995). 도형의 변환지도에 관한 연구. 단국대학교 석사학위논문.
- 양은경, 신재홍(2014a). 개방형 기하 문제에서 학생의 드래깅 활동을 통해 나타난 수학적 추론 분석. 수학교육학연구, 24(1), 1-27.
- 양은경, 신재홍(2014b). 작도 접근 방식에 따른 중학생의 기하학적 특성 인식 및 정당화. 수학교육학연구, 24(4), 507-528.
- 우정호(1998). 학교수학의 교육적 기초, 서울: 서울대학교 출판부.
- 최종렬(1992). 중등교육과정에서의 도형의 변환에 대한 연구, 경성대학교 석사학위논문.
- Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Fuentes, S. R., Trigueros, M., & Weller, K. (2013). APOS theory: A framework for research and curriculum development in mathematics education. Springer Science & Business Media.
- Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt fur Didaktik der Mathematik, 34, 66-72. https://doi.org/10.1007/BF02655708
- Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1997). A framework for research and curriculum development in undergraduate mathematics education. MAA NOTES, 37-54.
- Baccaglini-Frank, A. (2010). Conjecturing in dynamic geometry: A model for conjecture-Generation through maintaining dragging, Doctoral dissertation, University of New Hampshire, Durham, NH, USA. ISBN: 9781124301969.
- Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23, 247-285. https://doi.org/10.1007/BF02309532
- Dixon, J. K. (1997). Computer use and visualization in students' construction of reflection and rotation concepts. School Science and Mathematics, 97(7), 352-358. https://doi.org/10.1111/j.1949-8594.1997.tb17376.x
- Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall(Ed.), Advanced mathematical thinking. Dordrecht : Kluwer Academic Publishers, 류희찬, 조완영, 김인수 (공역) (2002), 고등수학적 사고. 서울:경문사.
- Guven, B. (2012). Using dynamic geometry software to improve eight grade students' understanding of transformation geometry. Australasian Journal of Educational Technology, 28(2), 364-382.
- Hollebrands, K. F. (2003). High school students' understandings of geometric transformations in the context of a technological environment. Journal of Mathematical Behavior, 22(1), 55-72. https://doi.org/10.1016/S0732-3123(03)00004-X
- Hollebrands, K. F. (2004). High school students' intuitive understandings of geometric transformations. The Mathematics Teacher, 207-214.
- Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 164-192.
- Klein, F. (1932). Elementary mathematics from an advanced standpoint: Arithmetic, algebra, analysis (Vol. 1). Courier Corporation.
- Law, C. K. (1991). A genetic decomposition of geometric transformations (Unpublished doctoral dissertation). Purdue University, Indiana, U.S.
- Leung, A. (2012). Discernment and Reasoning in Dynamic Geometry Environments. www.icme12.org/upload/submission/1961_F.pdf.
- Leung, A., & Lopez-Real, F. (2002). Theorem justification and acquisition in dynamic geometry: A case of proof by contradiction, International Journal of Computers for Mathematical Learning, 7, 145-165. https://doi.org/10.1023/A:1021195015288
- Lopez-Real, F., & Leung, A. (2006). Dragging as a conceptual tool in dynamic geometry environments. International Journal of Mathematical Education in Science and Technology, 37(6), 665-679. https://doi.org/10.1080/00207390600712539
- Martin, G. E. (1982). Transformation geometry: An introduction to symmetry. Springer Science & Business Media.
- Maxwell, J. A. (2012). Qualitative research design: An interactive approach (Vol. 41). Sage.
- Meagher, M., Cooley, L., Martin, B., Vidakovuc, D., & Loch, S. (2006). The learning of linear algebra from an APOS perspective. In S. Alatorre, J. L. Cortina, M. Saiz, & A. Mendez (Eds.), Proceedings of the 28th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Mexico: Universidad Pedagogica Nacional.
- Monaghan, J., Sun, S., & Tall, D. O. (1994). Construction of the limit concept with a computer algebra system. Proceedings of PME, 18, 279-286.
- Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. Handbook of research design in mathematics and science education, 267-306.
- Vidakovic, D.(1996). Learning the concept of inverse function. Journal of computers in Mathematics and Science Teaching, 15, 295-318.
- Weller, K., Clark, J., Dubinsky, E., Loch, S., McDonald, M., & Merkovsky, R.(2003). Student performance and attitudes in courses based on APOS Theory and the ACE Teaching Cycle. In A Selden, E Dubinsky, G Harel & F Hitt (eds). Research in Collegiate Mathematics Education V. Providence, RI: American Mathematical Socie.
- Wesslen, M., & Fernandez, S. (2005). Transformation geometry. Mathematics Teaching, 191, 27-29.
- Zazkis, R., Dubinsky, E., & Dautermann, J. (1996). Coordinating Visual and Analytic Strategies: A study of students' understanding of the group D 4. Journal for research in Mathematics Education, 435-457.