DOI QR코드

DOI QR Code

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae (Research Institute of Marine Systems Engineering, Seoul National University) ;
  • Lee, Jun-Hyeok (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Suh, Jung-Chun (Research Institute of Marine Systems Engineering, Seoul National University)
  • 투고 : 2015.03.20
  • 심사 : 2015.08.26
  • 발행 : 2015.11.30

초록

This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

키워드

참고문헌

  1. Angot, P., Brunear, C.H., Fabrie, P., 1999. A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik, 81(4), pp.497-520. https://doi.org/10.1007/s002110050401
  2. Ausoni, P., 2009. Turbulent vortex shedding from a blunt trailing edge hydrofoil. Ph.D. Thesis. Ecole Polytechnique Federale de Lausanne.
  3. Beaugendre, H., Morency,F., Gallizio, F., and Laurens, S., 2011. Computation of ice shedding trajectories using Cartesian grids, penalization, and level sets. Modelling and Simulation in Engineering, 2011.
  4. Boffetta, G. and Ecke, R.E., 2012. Two-dimensional turbulence. Annual Reviews of Fluid Mechanics, 44, pp.427-451. https://doi.org/10.1146/annurev-fluid-120710-101240
  5. Bourgoyne, D.A., Ceccio, S.L. and Dowling, D.R., 2005. Vortex shedding from a hydroil at high Reynolds number. Journal of Fluid Mechanics, 531, pp.293-324. https://doi.org/10.1017/S0022112005004076
  6. Caswell, B., 1967. Kinematics and stress on a surface rest. Archive for Rational Mechanics and Analysis. 26(5), pp.385-399. https://doi.org/10.1007/BF00281641
  7. Chen, H. and Marshall, J.S., 1999. A Lagrangian vorticity method for two-phase particulate flows with two-way phase coupling. Journal of Computational Physics, 148(1), pp.169-198. https://doi.org/10.1006/jcph.1998.6116
  8. Chen, Z.S. and Kim, W.J., 2010. Numerical investigation of vortex shedding and vortex-induced vibration for flexible riser models. International Journal of Naval Architecture and Ocean Engineering, 2(2), pp.112-118. https://doi.org/10.3744/JNAOE.2010.2.2.112
  9. Christiansen, J.P., 1973. Numerical simulation of hydrodynamics by the method of point vortices. Journal of Computational Physics, 13, pp.363-379. https://doi.org/10.1016/0021-9991(73)90042-9
  10. Cocle, R., Winckelmans, G. and Daeninck, G., 2008. Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations. Journal of Computational Physics, 227, pp.9091-9120. https://doi.org/10.1016/j.jcp.2007.10.010
  11. Coquerelle, M. and Cottet, G.-H., 2008. A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. Journal of Computational Physics, 227, pp.9121-9137. https://doi.org/10.1016/j.jcp.2008.03.041
  12. Fischer, R., 2008. Singing propellers-solutions and case histories. Marine Technology, 45(4), pp.221-227.
  13. Frigo, M. and Johnson, S.G., 2005. The design and implementation of FFTW3. Proceedings of the IEEE, 93(2), pp.216-231. https://doi.org/10.1109/JPROC.2004.840301
  14. Griffin, O.M., 1995. A note on bluff body vortex formation. Journal of Fluid Mechanics, 284, pp.217-224. https://doi.org/10.1017/S0022112095000322
  15. Huang, B., Zhao, Y. and Wang, G.Y., 2014. Large eddy simulation of turbulent vortex cavitation interactions in transient sheet/cloud cavitating flows. Computers and Fluids, 92, pp.113-124. https://doi.org/10.1016/j.compfluid.2013.12.024
  16. Iwakami, W., Yatagai, Y., Hatakeyama, N. and Hattori, Y., 2014. New approach for error reduction in the volume penalization method. Communications in Computational Physics, 16(5), pp.1181-1200. https://doi.org/10.4208/cicp.220513.070514a
  17. Ji, B., Luo, X.W., Arndt, R.E.A., Peng, X. and Wu, Y., 2015. Large eddy simulation and theoretical investigations of the transient cavitating vertical flow structure around a NACA66 hydrofoil, International Journal of Multiphase Flow, 68, pp.121-134. https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.008
  18. Kim, Y.C. and Rheem, C.K., 2009. Cross flow response of a cylindrical structure under local shear flow. International Journal of Naval Architecture and Ocean Engineering, 1, pp.101-107. https://doi.org/10.3744/JNAOE.2009.1.2.101
  19. Lee, S.J., Lee, J.H., and Suh, J.C., 2014. Computation of pressure fields around a two-dimensional circular cylinder using the vortex-in-cell and penalization methods. Modelling and Simulation in Engineering, 2014.
  20. Lee, S.J., Lee, J.H., and Suh, J.C., 2015. Numerical investigation on vortex shedding from a hydrofoil with a beveled trailing edge. Modelling and Simulation in Engineering, 2015.
  21. Mansfield, J.R., Knio, O.M. and Meneveau, C., 1996. Towards Lagrangian large vortex simulation. ESAIM:Proceeding, 1, pp.49-64. https://doi.org/10.1051/proc:1996019
  22. Monaghan, J.J., 1985. Particle methods for hydrodynamics. Computer Physics Reports, 3, pp.71-124. https://doi.org/10.1016/0167-7977(85)90010-3
  23. Ossmani, M.E. and Poncet, P., 2010. Efficiency of multiscale hybrid grid-particle vortex methods. Multiscale Modeling and Simulation, 8(5), pp.1671-1690. https://doi.org/10.1137/090765006
  24. Ploumhans, P. and Winckelmans, G.S., 2000. Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry. Journal of Computational Physics, 165, pp.354-406. https://doi.org/10.1006/jcph.2000.6614
  25. Pope, S.B., 2000. Turbulent flows. Cambridge: Cambridge University Press
  26. Rasmeussen, J.T., Cottet, G.H., and Walther, J.H., 2011. A multiresolution remeshed Vortex-In-Cell algorithm using patches. Journal of Computational Physics, 230, pp.6742-6755. https://doi.org/10.1016/j.jcp.2011.05.006
  27. Shioiri, J., 1965. An aspect of the propeller-singing phenomenon as a self-excited oscillation, Davidson Laboratory report no. 1059. Virginia: Defense Documentation Center.
  28. Singh, S.P. and Mittal, S., 2005. Flow past a cylinder: shear layer instability and drag crisis. International Journal for Numerical Methods in Fluids, 47, pp.75-98. https://doi.org/10.1002/fld.807
  29. Stock, M.J., Dahm, W.J.A. and Tryggvason, G., 2008. Impact of a vortex ring on a density interface using a regularized inviscid vortex sheet method. Journal of Computational Physics, 227(21), pp.9021-9043. https://doi.org/10.1016/j.jcp.2008.05.022
  30. Zobeiri, A., Ausoni, P., Avellan, F., and Farhat, M., 2012. How oblique trailing edge of a hydrofoil reduces the vortexinduced vibration. Journal of Fluids and Structures, 32, pp.78-89. https://doi.org/10.1016/j.jfluidstructs.2011.12.003

피인용 문헌

  1. Fast Computation of Domain Boundary Conditions Using Splines in Penalized VIC Method vol.15, pp.1, 2015, https://doi.org/10.1142/s0219876217500761
  2. A novel and efficient approach to specifying Dirichlet far-field boundary condition of pressure Poisson equation vol.28, pp.3, 2015, https://doi.org/10.1108/hff-02-2017-0060
  3. Numerical Investigation of the Cavitation Effects on the Vortex Shedding from a Hydrofoil with Blunt Trailing Edge vol.5, pp.4, 2015, https://doi.org/10.3390/fluids5040218