DOI QR코드

DOI QR Code

Bactericidal Effect of Pathogenic Bacteria on Acid Treatment Combined with Red, Green, and Blue LED Light at a Low Temperature Environment

저온에서 산 처리와 적색, 녹색, 청색 LED 조사의 조합에 따른 식중독 세균의 살균 효과

  • Do, Jung Sun (Department of Food and Nutrition and LED-IT Fusion Technology Research Center, Yeungnam University) ;
  • Chung, Hyun-Jung (Department of Food and Nutrition, Inha University) ;
  • Bang, Woo-Suk (Department of Food and Nutrition and LED-IT Fusion Technology Research Center, Yeungnam University)
  • 도정선 (영남대학교 식품영양학과 및 LED-IT 융복합연구센터) ;
  • 정현정 (인하대학교 식품영양학과) ;
  • 방우석 (영남대학교 식품영양학과 및 LED-IT 융복합연구센터)
  • Received : 2015.07.16
  • Accepted : 2015.08.03
  • Published : 2015.11.30

Abstract

The bactericidal effects of 642, 521, and 461 nm LED were investigated on Escherichia coli O157:H7 and Staphylococcus aureus strains in TSB with pH 7.2, 4.0, and 3.5 for 10 h at $15^{\circ}C$. The bactericidal effect of 461 nm blue LED was the most pronounced compared to 642 nm and 521 nm LEDs at pH 3.5. When E. coli was exposed to pH 3.5 with 461 nm LED, populations of E. coli O157:H7 ATCC 43894 and 35150 decreased by 4 and 5 log CFU/mL for 2 h, respectively. Populations of E. coli ATCC 8739 decreased by 5 log CFU/mL for 2 h. Further, S. aureus ATCC 27664, 43300, and 19095 were inactivated by 4, 5 and 5 log CFU/mL for 2 h, respectively, at pH 3.5 with 461 nm LED. In conclusion, combined treatment with 461 nm LED and acidic conditions at low-temperature ($15^{\circ}C$) showed the greatest antimicrobial effects. This study suggests that LEDs may be potentially used as a method to maintain the safety of the food preservation technology.

본 연구는 $15^{\circ}C$ 저온환경에서 642 nm, 521 nm, 그리고 461 nm LED를 이용하여 E. coli O157:H7, S. aureus의 식중독균에 대해 pH 7.2, 4.0, 3.5의 환경에서 10시간 동안 조사 후 살균 효과를 측정하였다. 이는 화학적 photosensitizer 없이 직접 조사로 이루어졌다. 642 nm 적색 LED와 521 nm 녹색 LED는 pH 7.2에서 미생물을 효과적으로 저해시키지 못했다. 반면 461 nm 청색 LED는 모든 pH 환경에서 가장 높은 살균 효과를 나타냈다. 특히 pH 3.5 환경은 모든 균종에서 높은 생육 저해가 이루어져 그람음성균과 그람양성균에 관계없이 높은 살균 효과를 나타냈다. 모든 파장에서 pH는 강한 산성 환경이 형성될수록 높은 살균 효과가 나타나 pH 3.5의 환경에서 가장 효과적인 저해가 일어났다. 본 연구의 결과는 LED 처리 및 산 환경과의 조합을 통해 식품산업의 미생물 안전성을 증진시키는 새로운 살균 처리 기술로 적용하기 위한 기초자료로의 이용이 가능할 것으로 판단된다.

Keywords

References

  1. Kim YJ. 2009. High intensity pulsed electric field technology as a reemerging technology for sustainable food industry. Bulletin Food Technol 22: 693-699.
  2. Korea Food and Drug Administration. 2014. Available from: http://www.mfds.go.kr/e-stat/index.do (accessed Mar 2015).
  3. Mori R, Amako K. 1988. Today's new bacteriology. Nanzando Company, Tokyo, Japan. p 359.
  4. Kim JD. 2002. The growth inhibiting effect of E. coli KCTC 1039 by combination of natural products bearing antioxidative capacity. Korean J Biotechnol Bioeng 17: 490-496.
  5. de Lencastre H, Chung M, Westh H. 2000. Archaic strains of methicillin-resistant Staphylococcus aureus: molecular and microbiological properties of isolates from the 1960s in Denmark. Microb Drug Resist 6: 1-10. https://doi.org/10.1089/mdr.2000.6.1
  6. Kim YS, Shin DH. 2003. Researches on the volatile antimicrobial compounds from edible plants and their food application. Korean J Food Sci Technol 35: 159-165.
  7. Conner DE, Beuchat LR. 1984. Effect of essential oils from plants on growth of food spoilage yeasts. J Food Sci 49: 429-434. https://doi.org/10.1111/j.1365-2621.1984.tb12437.x
  8. Hwang MG, Park JH, Im JM, Lee JW. 2009. Eco-friendly, high efficiency LED lighting. A-JIN, Seoul, Korea. p 3-78.
  9. Nam SY, Park MS, Gang JG. 2010. The LED technology and application of green energy. SangHakdang, Seoul, Korea. p 11-114.
  10. Steinbauer JM, Schreml S, Kohl EA, Karrer S, Landthaler M, Szeimies RM. 2010. Photodynamic therapy in dermatology. J Dtsch Dermatol Ges 8: 454-464.
  11. Kim SH, Lim JH. 2013. Release of psychological or physiological depression for university students according to light (color) environment of art therapy space. Kor J Counsel Psychoth 4: 55-73.
  12. Choi WS, Park SH, Lee SW, Jung YM, Yi HC. 2012. Study on compound humidifier employing UV-LED using environmental life cycle assessment. J Korean Soc Precis Eng 29: 931-937. https://doi.org/10.7736/KSPE.2012.29.9.931
  13. Choi HG, Kwon JK, Moon BY, Kang NJ, Park KS, Cho MW, Kim YC. 2013. Effect of different light emitting diode (LED) lights on the growth characteristics and the phytochemical production of strawberry fruits during cultivation. Kor J Hort Sci Technol 31: 56-64.
  14. An YI, Jeong HG. 2012. Fishing efficiency of LED fishing lamp for squid Todarodes pacificus by training ship. J Kor Soc Fish Tech 48: 187-194. https://doi.org/10.3796/KSFT.2012.48.3.187
  15. Oh BS, Ju S, Kim KS, Kang TH, Lee JY, Lee HY, Kang JW. 2004. Monitoring of bacteria using PCR method and inactivation with ozone and UV. J Kor Society Water Quality 20: 170-175.
  16. Ferro S, Guidolin L, Tognon G, Jori G, Coppellotti O. 2009. Mechanisms involved in the photosensitized inactivation of Acanthamoeba palestinensis trophozoites. J Appl Microbiol 107: 1615-1623. https://doi.org/10.1111/j.1365-2672.2009.04348.x
  17. Young AR. 2006. Acute effects of UVR on human eyes and skin. Prog Biophys Mol Biol 92: 80-85. https://doi.org/10.1016/j.pbiomolbio.2006.02.005
  18. Morton CA, Scholefield RD, Whitehurst C, Birch J. 2005. An open study to determine the efficacy of blue light in the treatment of mild to moderate acne. J Dermatolog Treat 16: 219-223. https://doi.org/10.1080/09546630500283664
  19. Hamblin MR, Hasan T. 2004. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3: 436-450. https://doi.org/10.1039/b311900a
  20. Endarko E, Maclean M, Timoshkin IV, MacGregor SJ, Anderson JG. 2012. High-intensity 405 nm light inactivation of Listeria monocytogenes. Photochem Photobiol 88: 1280-1286. https://doi.org/10.1111/j.1751-1097.2012.01173.x
  21. Murdoch LE, Maclean M, MacGregor SJ, Anderson JG. 2010. Inactivation of Campylobacter jejuni by exposure to high-intensity 405-nm visible light. Foodborne Pathog Dis 7: 1211-1216. https://doi.org/10.1089/fpd.2010.0561
  22. Maclean M, MacGregor SJ, Anderson JG, Woolsey G. 2009. Inactivation of bacterial pathogens following exposure to light from a 405-nm light-emitting diode array. Appl Environ Microbiol 75: 1932-1937. https://doi.org/10.1128/AEM.01892-08
  23. Murdoch LE, Maclean M, Endarko E, MacGregor SJ, Anderson JG. 2012. Bactericidal effects of 405 nm light exposure demonstrated by inactivation of Escherichia, Salmonella, Shigella, Listeria, and Mycobacterium species in liquid suspensions and on exposed surfaces. Scientific World Journal 2012: 137805.
  24. Enwemeka CS, Williams D, Enwemeka SK, Hollosi S, Yens D. 2009. Blue 470-nm light kills methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Photomed Laser Surg 27: 221-226. https://doi.org/10.1089/pho.2008.2413
  25. Yun H, Park K, Ryu KY, Kim SR, Yun JC, Kim BS. 2012. Effect of LED treatment on microbial reduction and quality characteristics of red pepper power. J Fd Hyg Safety 27: 442-448. https://doi.org/10.13103/JFHS.2012.27.4.442
  26. Wi HS. 2011. The antifungal effect of light emitting diode on Malassezia yeasts. MS Thesis. Chonnam National University, Gwangju, Korea.
  27. Ghate V, Leong AL, Kumar A, Bang WS, Zhou W, Yuk HG. 2015. Enhancing the antibacterial effect of 461 nm and 521 nm light emitting diodes on selected foodborne pathogens in trypticase soy broth by acidic and alkaline pH conditions. Food Microbiol 48: 49-57. https://doi.org/10.1016/j.fm.2014.10.014
  28. Yousef AE, Juneja VK. 2003. Microbial stress adaptation and food safety. CRC Press, Boca Raton, FL, USA. p 3-4.
  29. Enwemeka CS, Williams D, Hollosi S, Yens D, Enwemeka SK. 2008. Visible 405 nm SLD light photo-destroys methicillin- resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 40: 734-737. https://doi.org/10.1002/lsm.20724
  30. Maclean M, MacGregor SJ, Anderson JG, Woolsey GA. 2008. The role of oxygen in the visible-light inactivation of Staphylococcus aureus. J Photochem Photobiol B 92: 180-184. https://doi.org/10.1016/j.jphotobiol.2008.06.006
  31. Wang T, MacGregor SJ, Anderson JG, Woolsey GA. 2005. Pulsed ultra-violet inactivation spectrum of Escherichia coli. Water Res 39: 2921-2925. https://doi.org/10.1016/j.watres.2005.04.067
  32. Demidova TN, Hamblin MR. 2004. Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol 17: 245-254. https://doi.org/10.1177/039463200401700304
  33. Redmond RW, Gamlin JN. 1999. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 70: 391-475. https://doi.org/10.1562/0031-8655(1999)070<0391:ACOSOY>2.3.CO;2
  34. Nitzan Y, Salmon-Divon M, Shporen E, Malik Z. 2004. ALA sinduced photodynamic effects on gram positive and negative bacteria. Photochem Photobiol Sci 3: 430-435. https://doi.org/10.1039/b315633h
  35. Ghate VS, Ng KS, Zhou W, Yang H, Khoo GH, Yoon WB, Yuk HG. 2013. Antibacterial effect of light emitting diodes of visible wavelengths on selected foodborne pathogens at different illumination temperatures. Int J Food Microbiol 166: 399-406. https://doi.org/10.1016/j.ijfoodmicro.2013.07.018

Cited by

  1. A Study on Inactivation of Pathogenic Bacteria for Nutrient Solution Recycling Using Advanced Oxidation Processes vol.50, pp.5, 2017, https://doi.org/10.7745/kjssf.2017.50.5.489
  2. 압출떡의 유통기한 연장을 위한 LED 조사의 Bacillus cereus 억제 효과 및 LED의 배열에 따른 빛의 조사 패턴 시뮬레이션 vol.62, pp.2, 2015, https://doi.org/10.3839/jabc.2019.025
  3. Effect of Light-Emitting Diode (LED) Wavelengths on Growth of Saccharomyces cerevisiae vol.50, pp.3, 2015, https://doi.org/10.3746/jkfn.2021.50.3.301