References
- R. An and J. Hou, Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese J. Math. 10 (2006), no. 1, 45-64. https://doi.org/10.11650/twjm/1500403798
- F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, Cambridge Univ. Press, London, 1971.
- M. Bresar and S. Spela, Determining elements in Banach algebras through spectral properties, J. Math. Anal. Appl. 393 (2012), no. 1, 144-150. https://doi.org/10.1016/j.jmaa.2012.03.058
- J. T. Chan, Numerical radius preserving operators on B(H), Proc. Amer. Math. Soc. 123 (1995), no. 5, 1437-1439. https://doi.org/10.1090/S0002-9939-1995-1231293-7
- M. A. Chebotar, W. F. Ke, P. K. Lee, and N. C. Wong, Mappings preserving zero products, Studia Math. 155 (2003), no. 1, 77-94. https://doi.org/10.4064/sm155-1-6
- J. B. Conway, A Course in Functional Analysis, Springer, 1990.
- H. L. Gau and C. K. Li, C*-isomorphisms, Jordan isomorphisms, and numerical range preserving maps, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2907-2914. https://doi.org/10.1090/S0002-9939-07-08807-7
- P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
- J. Hou and Q. Di, Maps preserving numerical ranges of operator products, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1435-1446. https://doi.org/10.1090/S0002-9939-05-08101-3
- R. V. Kadisson, Isometries of operator algebras, Ann. of Math. 54 (1951), no. 2, 325- 338. https://doi.org/10.2307/1969534
- E. C. Lance, Unitary operators on Hilbert C*-modules, Bull. London Math. Soc. 4 (1994), no. 4, 363-366.
- C. K. Li, A survey on linear preservers of numerical ranges and radii, Taiwanese J. Math. 5 (2001), no. 3, 477-496. https://doi.org/10.11650/twjm/1500574944
- C. K. Li and E. Poon, Maps preserving the joint numerical radius distance of operators, Linear Algebra Appl. 437 (2012), no. 5, 1194-1204. https://doi.org/10.1016/j.laa.2012.04.018
- L. Molnar, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), no. 3, 295-302. https://doi.org/10.4064/sm-142-3-295-302
- V. Pellegrini, Numerical range preserving operators on a Banach algebra, Studia Math. 54 (1975), no. 2, 143-147. https://doi.org/10.1002/sapm1975542143
- J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebras, Tohoku Math. J. 20 (1968), 417-424. https://doi.org/10.2748/tmj/1178243070
Cited by
- Numerical radius characterizations of elements in -algebras 2018, https://doi.org/10.1080/03081087.2017.1380595