MAPPING PRESERVING NUMERICAL RANGE OF OPERATOR PRODUCTS ON C^* -ALGEBRAS

Mohamed Mabrouk

ABSTRACT. Let \mathcal{A} and \mathcal{B} be two unital C^* -algebras. Denote by W(a) the numerical range of an element $a \in \mathcal{A}$. We show that the condition $W(ax) = W(bx), \forall x \in \mathcal{A}$ implies that a = b. Using this, among other results, it is proved that if $\phi: \mathcal{A} \to \mathcal{B}$ is a surjective map such that $W(\phi(a)\phi(b)\phi(c)) = W(abc)$ for all a,b and $c \in \mathcal{A}$, then $\phi(1) \in Z(B)$ and the map $\psi = \phi(1)^2 \phi$ is multiplicative.

1. Introduction

Let \mathcal{A} be a C^* -algebra with unit 1 and let $S(\mathcal{A})$ be the state space of \mathcal{A} , i.e., $S(\mathcal{A}) = \{\varphi \in \mathcal{A}' : \varphi \geq 0, \varphi(1) = 1\}$ (here \mathcal{A}' is the topological dual of \mathcal{A}). For each $a \in \mathcal{A}$, the algebraic numerical range V(a) and numerical radius v(a) are defined by

$$V(a) = \{f(a): f \in S(\mathcal{A})\} \text{ and } v(a) = \sup_{z \in V(a)} |z|.$$

By the Gelefand-Naimark theorem, every C^* -algebra may be viewed as a closed *-subalgebra of B(H) where B(H) denotes the algebra of all bounded linear operators acting on a Hilbert space H. It is well known that V(a) is the closure of W(a) and $v(a) = w(a) = \sup_{\lambda \in W(a)} |\lambda|$, where $W(a) = \{(at,t) : t \in H, ||t|| = 1\}$

and (,) denotes the inner product. Here W(a) is called the usual numerical range of the operator a.

In the last few decades, there has been a considerable interest in the problem of characterization of maps that preserves the numerical range or the numerical radius, see for instance the papers [4, 12, 13, 15] and the references therein. Notice that, based on the aforesaid, preserving the usual numerical range W implies the preservation of the spacial numerical range V. Therefore, we will concentrate our study henceforth on W. Recently, Hou and Di described in [9] surjective maps on the algebra B(H) which preserves the numerical range of

Received September 24, 2014; Revised April 28, 2015.

 $^{2010\} Mathematics\ Subject\ Classification.\ 15A86,\ 46L05,\ 47A12,\ 47B49.$

 $[\]textit{Key words and phrases. } C^*$ -algebras, numerical range, preserving the numerical range.

1964

the product. Namely, they characterized surjective mappings which satisfy one of the following conditions

(1a)
$$W(\phi(a)\phi(b)) = W(ab),$$

(1b)
$$W(\phi(a)^*\phi(b)) = W(a^*b),$$

(1c)
$$W(\phi(a)\phi(b)\phi(a)) = W(aba),$$

for every a and b in B(H). In this paper, we extend these results by completely describing additive and surjective maps $\phi: \mathcal{A} \to \mathcal{B}$ between C^* -algebras satisfying (1a) or (1b) for every $a,b \in \mathcal{A}$. Concerning the condition (1c), we consider a more general case. More precisely, we show that if ϕ is surjective and satisfy $W(\phi(a)\phi(b)\phi(c)) = W(abc), \forall a,b$ and $c \in \mathcal{A}$ (without the additivity assumption), then the map $\psi = \phi(1)^2 \phi$ is multiplicative and preserves the set of self-adjoint elements. It is worth noticing that our proofs differ from those of [7] and [9] since we do not assume that \mathcal{A} contains rank one operators. At last, observe that the proof we put forward is much simpler.

The outline of the paper is as follows. Firstly, we show that if a and b in \mathcal{A} are such that W(ax) = W(bx) for every $x \in \mathcal{A}$, then the two operators a and b coincide. This result is used several times in our proofs. Namely, it helps us to show that if ϕ is additive and satisfies (1a) or (1b), then $\phi(1) \in \mathcal{Z}(\mathcal{B})$, where $Z(\mathcal{B})$ stands for the center of \mathcal{B} , and $\phi(1)\phi$ is a Jordan *-isomorphism. This characterization also allows us to show that if a map ϕ is surjective and satisfies $W(abc) = W(\phi(a)\phi(b)\phi(c))$ whenever a, b and c are in \mathcal{A} , then the map $\phi(1)^2\phi$ is multiplicative and therefore ϕ has standard forms when \mathcal{A} and \mathcal{B} are the algebras of all bounded linear operators acting on a Hilbert space.

2. Preliminaries

In this section, we collect some properties of the numerical range needed in the sequel. Let two unital C^* -algebras $\mathcal{A} \subset B(H)$ and $\mathcal{B} \subset B(K)$ be given. By $\operatorname{Sp}(a)$ (resp. r(a)) we denote the spectrum (resp. the spectral radius) of an element $a \in \mathcal{A}$. Since it does not lead to misunderstanding, we shall denote the norms in both algebras by the same symbols $\|\cdot\|$. We denote by $\mathcal{H}(\mathcal{A})$ the set of self adjoint elements defined by $\mathcal{H}(\mathcal{A}) = \{a \in \mathcal{A} : a = a^*\}$. It is well-known that $a \in \mathcal{H}(\mathcal{A})$ if and only if $W(a) \subset \mathbb{R}$. Further, an element $a \in \mathcal{A}$ is positive if and only if $W(a) \subset \mathbb{R}_+$ (or equivalently $a = a^*$ and $\operatorname{Sp}(a) \subset \mathbb{R}_+$), where \mathbb{R}_+ denotes the set of positive real numbers. In the case where $\mathcal{A} = C(K)$ for some Hausdorff compact space K we have $W(a) \subset V(a) = \operatorname{co}(a(K))$ for each $a \in C(K)$, see [16, Theorem 6]. Here co stands for closed convex hull. We summarize some other basic properties of the numerical range on the following lemma. One may see [2, 8] for more information.

Lemma 2.1.

- (i) ||a|| = w(a) = r(a) for every $a \in \mathcal{A}$ such that $aa^* = a^*a$.
- (ii) $W(a) = {\lambda} \iff a = \lambda 1$, for every $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$.

Finally, recall that a linear map $\psi: \mathcal{A} \to \mathcal{B}$ is called *unital* if $\psi(1) = 1$, and it is said to be a Jordan homomorphism if $\psi(a^2) = \psi(a)^2$ for all $a \in \mathcal{A}$. Equivalently, the map ψ is a Jordan homomorphism if and only if $\psi(ab+ba)=$ $\psi(a)\psi(b)+\psi(b)\psi(a)$ for all a and b in A. We also recall that the map ψ is said to be self-adjoint provided that $\psi(a^*) = \psi(a)^*$ for all $a \in \mathcal{A}$. Self-adjoint Jordan homomorphisms are called *Jordan* *-homomorphisms, and by a Jordan *-isomorphism, we mean a bijective *-homomorphism.

3. Main results and proofs

We start with the following introductory results, which may be of independent interest. We give a characterization of elements $a, b \in \mathcal{A}$ satisfying $W(ax) = W(bx), \forall x \in \mathcal{A} \text{ or } w(ax) = w(bx), \forall x \in \mathcal{H}(\mathcal{A}).$ It is worth observing that the authors in [3] have recently considered the question whether the equality $\operatorname{Sp}(ax) = \operatorname{Sp}(bx)$ for every $x \in \mathcal{A}$, where $a, b \in \mathcal{A}$ are fixed elements, implies a = b. An affirmative answer has been obtained for some classes of algebras, including C^* -algebras.

We begin with the following proposition which gives necessary conditions which ensure that a = b if $w(ax) = w(bx), \forall x \in \mathcal{H}(A)$. The argument of the proof is borrowed from [11, Lemma 3.4] by slight some modifications. We present it here for the sake of completeness.

Proposition 3.1. Let A be an unital C^* -algebra and $a, b \in A$ be two positive elements such that ab = ba. If w(ax) = w(bx) for every $x \in \mathcal{H}(A)$, then a = b.

Proof. Let \mathcal{B} be the unital C^* -algebra \mathcal{B} generated by a and b. Since, ab = ba, this algebra is commutative. Henceforth, without loss of generality we may suppose that \mathcal{A} is a commutative C^* -algebra. On the other hand, it is well known that every positive element in a C^* -algebra has unique square root, then to prove that a = b, it suffices to show that $a^2 = b^2$. Suppose to the contrary that $a^2 \neq b^2$. Since $a^2 - b^2$ is self-adjoint, there exists a non-zero $\beta \in \operatorname{Sp}(a^2 - b^2)$. We may assume that $\beta > 0$ (otherwise, we could replace $a^2 - b^2$ by $b^2 - a^2$). Let $\alpha = \frac{1}{2} \sup \operatorname{Sp}(a^2 - b^2) > 0$, and consider the real valued continuous function f defined on the spectrum of $a^2 - b^2$ such that $f(2\alpha) = 1, 0 \le f(\lambda) \le 1, \forall \lambda \in \operatorname{Sp}(a^2 - b^2) \text{ and } f(\lambda) = 0 \iff \lambda \le \alpha.$ Put $x_1 = f(a^2 - b^2)$ and $g(\lambda) = \lambda f(\lambda)^2, \forall \lambda \in \operatorname{Sp}(a^2 - b^2)$. So, using functional calculus (see [6, Theorem 2.9]) and the fact that $x_1(a^2 - b^2)x_1$ is self adjoint, we get $w(x_1(a^2 - b^2)x_1) = r(x_1(a^2 - b^2)x_1) = \sup_{\lambda \in \text{Sp}(a^2 - b^2)} |g(\lambda)| = 2\alpha$. In addition by using the same argument, it is easily shown that $x_1(a^2-b^2)x_1 \geq$ αx_1^2 . Now for $t \in H$ such that ||t|| = 1, let us define the positive linear form φ_t by $\varphi_t(a) = (at, t), \forall a \in \mathcal{A}$. Since $||b||x_1^2 - x_1b^2x_1$ is positive, we have $||b||\varphi_t(x_1^2) \geq \varphi_t(x_1b^2x_1) \geq 0$. On account of $x_1(a^2 - b^2)x_1 \geq \alpha x_1^2$, it follows that $\varphi_t(x_1a^2x_1) \geq (1 + \frac{\alpha}{||b||})\varphi_t(x_1b^2x_1)$. Since $0 \leq \varphi_t(x_1a^2x_1) \leq w(x_1a^2x_1)$, we infer that $w(x_1 a^2 x_1) \ge (1 + \frac{\alpha}{\|b\|}) w(x_1 b^2 x_1)$. Accordingly $\|ax_1\| \ge \sqrt{1 + \frac{\alpha}{\|b\|}} \|bx_1\| >$ $||bx_1||$. This obviously contradicts the hypothesis of the proposition, since $x_1 \in$

 $\mathcal{H}(\mathcal{A})$ and by Lemma 2.1, we have $||ax_1|| = w(ax_1) = w(bx_1) = ||bx_1||$. Thus a = b as desired.

The next two propositions are crucial for the rest of the paper. They give a characterization of elements $a, b \in \mathcal{A}$ satisfying W(ax) = W(bx) for every $x \in \mathcal{A}$ (or $\mathcal{H}(\mathcal{A})$).

Proposition 3.2. Let \mathcal{A} be an unital C^* -algebra and $a, b \in \mathcal{A}$. If $W(ax) = W(bx), \forall x \in \mathcal{A}$, then a = b.

Proof. Firstly, assume that $a = a^*$. Since $W(b) = W(a) \subset \mathbb{R}$, then $b^* = b$. On the other hand, by observing that $W(a^2) = W(ba)$ and the fact that a^2 is self adjoint, we infer that $(ba)^* = ba$. By taking into account that $(ba)^* = a^*b^*$ and that a and b are self adjoint, we get ab = ba. We prove now that a = b. Let \mathcal{B} be the C^* -algebra \mathcal{B} generated by a and b. Since a and b are self adjoint and satisfy ab = ba, this algebra is commutative. Hence, it can be identified with C(K), the algebra of all continuous functions on a compact Hausdorff space K. Observe also that $W(ax) = W(bx), \forall x \in \mathcal{B}$. We claim that the two functions a and b have the same sign (both positive, or both negative on K). Indeed, assuming that there exists $t_1 \in K$ such that $a(t_1) > 0$ and $b(t_1) < 0$. Therefore there exists an open set U_1 such that a(t) > 0 and b(t) < 0 for all $t \in U_1$. By Urysohn's lemma, one can find a continuous function $c_1: K \to [0,1]$ satisfying $c(t_1)=1$ and $\mathrm{supp}(c)\subset U_1$. On the other hand $W(ac)\subset \mathrm{co}(ac(K))$ and $W(bc) \subset \operatorname{co}(bc(K))$. Then, we get $W(ac) \subset [0, +\infty)$ and $W(bc) \subset (-\infty, 0]$. Observe that the case where $W(ac) = W(bc) = \{0\}$, does not occur since $ac \neq 0$. Therefore $W(ac) \neq W(bc)$, contrary to our assumption. Thus a and b have the same sign as suggested above. Consequently, without loss of generality, we can suppose that a, b are positive on U. From the condition $W(ax) = W(bx), \forall x \in \mathcal{B}$, we infer that $w(ax) = w(bx), \forall x \in \mathcal{B}$. It follows from Proposition 3.1 that a = b. We return now to the general case; i.e., if $a \in \mathcal{A}$ is arbitrary. Observe that, by assumption, we have, $W(aa^*x) = W(ba^*x)$ and $W(ab^*x) = W(bb^*x), \forall x \in \mathcal{A}$. Based on the aforesaid, we infer that $aa^* = ba^*$ and $ab^* = bb^*$. Accordingly, $(a - b)(a^* - b^*) = 0$, which implies that a = b. This ends the proof.

Proposition 3.3. If A is a unital C^* -algebra and a and $b \in \mathcal{H}(A)$. If $W(ax) = W(xb), \forall x \in \mathcal{H}(A)$ or $W(ax) = W(bx), \forall x \in \mathcal{H}(A)$, then a = b.

Proof. We give the proof for the condition $W(ax) = W(xb), \forall x \in \mathcal{H}(\mathcal{A})$. For the other condition the proof is similar. By using a similar reasoning as above, we can easily prove that ab = ba. Considering the commutative C^* -algebras \mathcal{B} generated by a, b and by taking into account that $W(ax) = W(bx), \forall x \in \mathcal{H}(\mathcal{B})$. By a similar reasoning as in the proof of the above proposition, we can show that a and b are either both positive or negative. We infer by means of Proposition 3.1 that a = b.

Remark 3.4. The results of Propositions 3.2 and 3.3 are still valid if we replace the numerical range by its closure. That is if two elements a and b satisfy V(ax) = V(bx) for every $x \in \mathcal{A}$ (or in $\mathcal{H}(\mathcal{A})$), then a similar argument can be used to show that a = b.

At this juncture, we are in a position to characterize surjective mapping satisfying

(2a)
$$W(\phi(a)\phi(b)\phi(c)) = W(abc)$$
 for all a, b and $c \in \mathcal{A}$,

(2b)
$$W(\phi(a)\phi(b)\phi(c)) = W(abc)$$
 for all a, b and $c \in \mathcal{H}(\mathcal{A})$.

Theorem 3.5. Let A and B be two unital C^* -algebras. Let $\phi: A \to B$ be a surjective mapping satisfying (2a). Then $\phi(1) \in Z(\mathcal{B}), \ \phi(1)^3 = 1$, and ϕ satisfies $\phi(ab) = \phi(1)^2 \phi(a) \phi(b)$ for all a and $b \in A$. In particular, the mapping $\psi = \phi(1)^2 \phi$ is multiplicative and preserves self-adjoint elements (i.e., $\psi(a) \in \mathcal{H}(\mathcal{B}) \text{ whenever } a \in \mathcal{H}(\mathcal{A}).$

Proof. Set $u = \phi(1)$. Take a = b = c = 1 in (2a), we obtain $W(u^3) = W(1) = 0$ {1}. Thus $u^3 = 1$ and hence u is invertible. Given $a, b \in \mathcal{A}$ such that $\phi(a) = 1$ $\phi(b)$. By (2a), we have $W(ac) = W(u\phi(a)\phi(c)) = W(u\phi(b)\phi(c)) = W(bc)$ for every $c \in \mathcal{A}$. By Proposition 3.2, we infer that a = b and ϕ is bijective as desired. Also, we have $W(u\phi(a)\phi(b)) = W(1ab) = W(a1b) = W(\phi(a)u\phi(b))$. Thus we get $W(u\phi(a)\phi(b)) = W(\phi(a)u\phi(b)), \forall b \in \mathcal{A}$. Since ϕ is a bijection and on account of Proposition 3.2, we get $u\phi(a) = \phi(a)u$, $\forall a \in \mathcal{A}$. That is to say that $u \in Z(\mathcal{B})$. To end the proof, observe that

$$W(\phi(a)\phi(b)\phi(c)) = W(abc) = W(1(ab)c)$$
$$= W(u\phi(ab)\phi(c)), \forall c \in \mathcal{A}.$$

By recalling that ϕ is bijective, again Proposition 3.2 implies that $\phi(ab) =$ $u^{-1}\phi(a)\phi(b)=u^2\phi(a)\phi(b)$. Now, put $\psi=u^2\phi$. We have

$$\psi(a)\psi(b) = u^2\phi(a)u^2\phi(b) = u\phi(a)\phi(b) = u^2\phi(ab) = \psi(ab).$$

Finally, observe that ϕ preserves self-adjoint elements because for every self adjoint element $a \in \mathcal{A}$, we have $W(\psi(a)) = W(\phi(1)^2 \phi(a)) = W(a) \subset \mathbb{R}$. The proof is thus complete. П

Corollary 3.6. Let A and B be two unital C^* -algebras. Let $\phi: A \to B$ be a surjective mapping satisfying

$$(3) W(\phi(a_1)\phi(a_2)\cdots\phi(a_n)) = W(a_1a_2\cdots a_n) for all a_1a_2\cdots a_n \in \mathcal{A}$$

for some integer $p \in \mathbb{N}$ with $p \geq 3$. Then $\phi(1) \in Z(\mathcal{B}), \ \phi(1)^p = 1$ and $\phi(1)^{p-1}\phi(a_1a_2\cdots a_p) = \phi(a_1)\phi(a_2)\cdots\phi(a_p) \text{ for all } a_1a_2\cdots a_p \in \mathcal{A}.$

Proof. It is obvious that $\phi(1)^p = 1$. If $\phi(a) = \phi(b)$ for some $a, b \in \mathcal{A}$. Since $W(\phi(a)\phi(x)\phi(1)^{p-2}) = W(\phi(b)\phi(x)\phi(1)^{p-2}), \text{ by (3), it yields that } W(ax) =$

W(bx) for every $x \in \mathcal{A}$. By Proposition 3.2, we get a = b. Hence ϕ is a bijection. Define $\psi = \phi(1)^{p-1}\phi$. We see that $\psi(1) = 1$ and

$$\psi(a)\psi(b)\psi(c) = \phi(1)^{p-1}\phi(a)\phi(1)^{p-1}\phi(b)\phi(1)^{p-1}\phi(c) = \phi(1)^{p-3}\phi(a)\phi(b)\phi(c).$$

From (3), we can deduce that $W(\psi(a)\psi(b)\psi(c)) = W(abc), \forall a, b, c \in \mathcal{A}$. By Theorem 3.5, the results follows.

Based, on Theorem 3.5, we know that if ϕ satisfy (2a), then the mapping $\psi = \phi(1)^2 \phi$ is multiplicative. The question of when a multiplicative map is additive was attacked by several authors. For instance, if ψ is a bijective map on a standard operator algebra, Molnàr showed in [14] that if ϕ satisfies $\psi(ABA) = \psi(A)\psi(B)\psi(A)$, then ψ is additive. Hence, based on the aforesaid, when the algebras $\mathcal A$ and $\mathcal B$ are the algebras of all bounded linear operators acting on some Hilbert spaces, Theorem 3.5 can be refined as follows.

Corollary 3.7. Let H and K be complex Hilbert spaces and let $\phi: B(H) \to B(K)$ be a surjective map (without the assumption of additivity). Then ϕ satisfies Eq. (2a) if and only if there is a unitary operator $U: H \to K$ such that ϕ is of the form $\phi(A) = \varepsilon UAU^*$ for all $A \in B(H)$, where $\varepsilon^3 = 1$.

Proof. Checking the 'if' part is straightforward, and we therefore will only deal with the 'only if' part. Assume that ϕ satisfies (2a). By Theorem 3.5, we have that $\phi(1) \in Z(B(K))$ and $\phi(1)^3 = 1$. Since the algebra B(K) has a trivial center, then $u = \phi(1) = \varepsilon.1$, where ε is a complex number such that $\varepsilon^3 = 1$. Also according to Theorem 3.5, the map $\psi = u^2 \phi$, is multiplicative and $\psi(1) = 1$. Consequently, by [14] it is additive. Finally, we have shown that ψ is an algebra isomorphism which preserves self-adjoint elements. Thus, by [4] ψ takes the following form: $\psi(A) = UAU^*$ for all $A \in B(H)$ where U is unitary.

For mapping $\phi: \mathcal{H}(\mathcal{A}) \to \mathcal{H}(\mathcal{B})$ satisfying (2b), we have a similar result which follows.

Theorem 3.8. Let \mathcal{A} and \mathcal{B} be two unital C^* -algebras. Let $\phi: \mathcal{H}(\mathcal{A}) \to \mathcal{H}(\mathcal{B})$ be a surjective mapping satisfying (2b). Then $\phi(1) \in Z(\mathcal{H}(\mathcal{B}))$, $\phi(1)^3 = 1$, and $\phi = \phi(1)\psi$, where ψ is multiplicative.

Proof. The proof is similar to that of Theorem 3.5 by invoking Proposition 3.3. The details are omitted. \Box

As a special case of Theorem 3.8 we derive the following result.

Theorem 3.9. Consider the case where A = B(H) and B = B(K) for some complex Hilbert spaces H and K. Let $\phi : \mathcal{H}(A) \to \mathcal{H}(B)$ be a surjective map. Then, ϕ satisfies (2b) if and only if there exists a unitary or conjugate unitary operator U and $\varepsilon \in \mathbb{C}$ such that $\phi(A) = \varepsilon UAU^*$ for all $A \in \mathcal{H}(A)$ and $\varepsilon^3 = 1$.

Proof. The sufficiency is easy to see. Indeed, this follows from the well-known fact that if U is a unitary or conjugate unitary operator, then $W(UAU^*)$ = W(A) for every $A \in \mathcal{A}$. Conversely, suppose that ϕ satisfies Eq. (2b) for every $A \in \mathcal{H}(A)$. Theorem 3.8, implies that $\psi = \phi(1)^2 \phi$ is multiplicative and $\psi(1) = 1$. Therefore, by [1, Theorem 2.1] there exists a unitary or conjugate unitary operator U such that $\psi(A) = UAU^*$ for all $A \in \mathcal{H}(A)$. To end the proof observe that $\phi = u\psi = \phi(1)\psi$ and in particular ϕ is linear. Since, by Theorem 3.8 we have $\phi(1) \in Z(\mathcal{H}(\mathcal{B}))$, we infer that $\phi(1) \in Z(\mathcal{B})$. Therefore, $\phi(1) = \varepsilon.1$, where ε is a complex number such that $\varepsilon^3 = 1$. Thus, completing the proof.

We give now the following theorem which characterizes surjective maps satisfying (1a) in the case of C^* -algebras. This result has been also proved in [7, Theorem 2.1.] for the Hilbert space operators case but without the extra condition that ϕ is additive. It would be interesting to remove the additive assumption in Theorem 3.10 below. We are not able to do that at present.

Theorem 3.10. Let A and B be two unital C^* -algebra and $\phi: A \to B$ be a surjective and additive map satisfying (1a). Then ϕ is a Jordan *-isomorphism followed by a left multiplication by a fixed element $u \in Z(\mathcal{B})$ with $u^2 = 1$, where $Z(\mathcal{B})$ stands for the center of \mathcal{B} .

Proof. Firstly, we prove that ϕ is bijective. It suffice to show that it is injective. Let $a, b \in \mathcal{A}$ such that $\phi(a) = \phi(b)$. By (1a), we have $W(\phi(a)\phi(c)) = W(ac) =$ $W(\phi(b)\phi(c)) = W(bc), \forall c \in \mathcal{A}$. By Proposition 3.2, it yields that a = b. Hence we have proved that ϕ is injective. Take a = b = 1 in (1a), we obtain $W(\phi(1)^2) = W(1) = \{1\}$. Whence $\phi(1)$ is invertible and $\phi(1)^2 = 1$. We show now that ϕ is linear. Let $\lambda \in \mathbb{C}$. By (1a) we have

$$W(\lambda\phi(a)\phi(b)) = \lambda W(\phi(a)\phi(b)) = \lambda W(ab)$$
$$= W(\lambda a)b = W(\phi(\lambda a)\phi(b)), \forall a, b \in \mathcal{A}.$$

Whence, by Proposition 3.2, it yields that $\phi(\lambda a) = \lambda \phi(a), \forall a \in \mathcal{A}$. Since ϕ is additive, we infer that ϕ is a linear bijection. Now, take $a, b \in \mathcal{A}$ such that ab = 0. By (1a), yields that $\phi(a)\phi(b) = 0$. Hence [5, Lemma 4.4], implies that $\phi(1)\phi(a) = \phi(a)\phi(1), \forall a \in \mathcal{A}.$ Together with the bijectivity of ϕ , this implies that $\phi(1) \in Z(\mathcal{B})$.

Finally, we show that ϕ has the asserted form. Set $\psi = u\phi$. It suffices to show that ψ is C^* -isomorphism. It is obvious that $\psi(1) = u^2 = 1$ and $W(\psi(a)\psi(b)) = W(ab), \forall a, b \in \mathcal{A}$. Thus, we have proved that ψ is a linear isomorphism satisfying $W(\psi(a)) = W(a)$ for every $a \in \mathcal{A}$. By [15, Theorem 3.1], the result follows.

Finally, we turn to the second type of preserver problems involving involution. We have the following result.

Theorem 3.11. Let \mathcal{A} and \mathcal{B} be two unital C^* -algebra and $\phi: \mathcal{A} \to \mathcal{B}$ be a surjective and additive map satisfying (1b). Then, $\phi(1)$ is unitary and $\phi = \phi(1)\psi$, where ψ is a Jordan *-isomorphism.

Proof. Firstly, observe that by (1b), we have

$$\|\phi(a)\|^2 = \|\phi(a)\phi(a)^*\| = w(\phi(a)\phi(a)^*) = w(aa^*) = \|aa^*\|^2, \forall a \in \mathcal{A}.$$

Taking the square root, we obtain $\|\phi(a)\| = \|a\|$, which yields that ϕ is an isometry and hence a bijection. Now, let $\lambda \in \mathbb{C}$ and $a \in \mathcal{A}$. For all $b \in \mathcal{A}$, we have

$$W((\lambda\phi(a))^*\phi(b)) = \overline{\lambda}W(\phi(a)^*\phi(b)) = \overline{\lambda}W(a^*b)$$
$$= W((\lambda a)^*b) = W((\phi(\lambda a))^*\phi(b)).$$

Using Proposition 3.2, we infer that $(\lambda\phi(a))^* = (\phi(\lambda a))^*$. Accordingly, $\lambda\phi(a) = \phi(\lambda a)$. In consequence of this, ϕ is a linear bijection. Thus, we have proved that ϕ is a linear isomorphism between two C^* -algebras which are isometric. By [10, Theorem 7], ϕ is a Jordan *-isomorphism followed by left multiplication by the fixed unitary operator $\phi(1)$.

Acknowledgements. The author wishes to express his thanks to the referee for carefully reading the paper and suggestions.

References

- [1] R. An and J. Hou, Additivity of Jordan multiplicative maps on Jordan operator algebras, Taiwanese J. Math. 10 (2006), no. 1, 45–64.
- [2] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, Cambridge Univ. Press, London, 1971.
- [3] M. Bresar and S. Spela, Determining elements in Banach algebras through spectral properties, J. Math. Anal. Appl. **393** (2012), no. 1, 144–150.
- [4] J. T. Chan, Numerical radius preserving operators on B(H), Proc. Amer. Math. Soc. 123 (1995), no. 5, 1437–1439.
- [5] M. A. Chebotar, W. F. Ke, P. K. Lee, and N. C. Wong, Mappings preserving zero products, Studia Math. 155 (2003), no. 1, 77–94.
- [6] J. B. Conway, A Course in Functional Analysis, Springer, 1990.
- [7] H. L. Gau and C. K. Li, C*-isomorphisms, Jordan isomorphisms, and numerical range preserving maps, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2907–2914.
- [8] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
- [9] J. Hou and Q. Di, Maps preserving numerical ranges of operator products, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1435–1446.
- [10] R. V. Kadisson, Isometries of operator algebras, Ann. of Math. 54 (1951), no. 2, 325–338
- [11] E. C. Lance, Unitary operators on Hilbert C*-modules, Bull. London Math. Soc. 4 (1994), no. 4, 363–366.
- [12] C. K. Li, A survey on linear preservers of numerical ranges and radii, Taiwanese J. Math. 5 (2001), no. 3, 477–496.
- [13] C. K. Li and E. Poon, Maps preserving the joint numerical radius distance of operators, Linear Algebra Appl. 437 (2012), no. 5, 1194–1204.
- [14] L. Molnár, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), no. 3, 295–302.

- [15] V. Pellegrini, Numerical range preserving operators on a Banach algebra, Studia Math. ${\bf 54}~(1975),$ no. 2, 143–147.
- [16] J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebras, Tohoku Math. J. **20** (1968), 417–424.

DEPARTMENT OF MATHEMATICS
COLLEGE OF APPLIED SCIENCES
P. O. BOX 715, MAKKAH 21955, KSA
AND
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES
GABÈS - RIADH CITY - ZIRIG 6072 - TUNISIA
E-mail address: msmabrouk@uqu.edu.sa