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MAPPING PRESERVING NUMERICAL RANGE OF
OPERATOR PRODUCTS ON C*-ALGEBRAS

MOHAMED MABROUK

ABSTRACT. Let A and B be two unital C*-algebras. Denote by W(a)
the numerical range of an element a € A. We show that the condition
W(az) = W(bz),Vz € A implies that a = b. Using this, among other
results, it is proved that if ¢ : A — B is a surjective map such that
W (é(a)p(b)p(c)) = W (abc) for all a,b and c € A, then ¢(1) € Z(B) and
the map 1 = ¢(1)2¢ is multiplicative.

1. Introduction

Let A be a C*-algebra with unit 1 and let S(A) be the state space of A, i.e.,
S(A)={pe A :9>0,p(1) =1} (here A is the topological dual of A). For
each a € A, the algebraic numerical range V'(a) and numerical radius v(a) are
defined by

V(a)={f(a): f € S(A)} and v(a) = sup |z|.
z€V (a)
By the Gelefand-Naimark theorem, every C*-algebra may be viewed as a closed
x-subalgebra of B(H) where B(H) denotes the algebra of all bounded linear
operators acting on a Hilbert space H. It is well known that V' (a) is the closure
of W(a) and v(a) = w(a) = sup |A|, where W(a) = {(at,t): ¢t € H, ||t| = 1}
AeW (a)

and (,) denotes the inner product. Here W(a) is called the usual numerical
range of the operator a.

In the last few decades, there has been a considerable interest in the problem
of characterization of maps that preserves the numerical range or the numerical
radius, see for instance the papers [4, 12, 13, 15] and the references therein.
Notice that, based on the aforesaid, preserving the usual numerical range W
implies the preservation of the spacial numerical range V. Therefore, we will
concentrate our study henceforth on W. Recently, Hou and Di described in [9]
surjective maps on the algebra B(H) which preserves the numerical range of
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the product. Namely, they characterized surjective mappings which satisfy one
of the following conditions

(1a) W(¢(a)¢(b)) = W (ab),
(1b) W(d(a) ¢(b)) = W(a"b),
(1c) W(d(a)d(b)p(a)) = W (aba),

for every a and b in B(H). In this paper, we extend these results by completely
describing additive and surjective maps ¢ : A — B between C*-algebras sat-
isfying (la) or (1b) for every a,b € A. Concerning the condition (1lc), we
consider a more general case. More precisely, we show that if ¢ is surjective
and satisfy W (¢(a)o(b)d(c)) = W(abe),Va, b and ¢ € A (without the additivity
assumption), then the map ¢ = ¢(1)%¢ is multiplicative and preserves the set
of self-adjoint elements. It is worth noticing that our proofs differ from those
of [7] and [9] since we do not assume that A contains rank one operators. At
last, observe that the proof we put forward is much simpler.

The outline of the paper is as follows. Firstly, we show that if ¢ and b in A
are such that W(ax) = W (bx) for every x € A, then the two operators a and
b coincide. This result is used several times in our proofs. Namely, it helps
us to show that if ¢ is additive and satisfies (1a) or (1b), then ¢(1) € Z(B),
where Z(B) stands for the center of B, and ¢(1)¢ is a Jordan #-isomorphism.
This characterization also allows us to show that if a map ¢ is surjective and
satisfies W(abc) = W(p(a)d(b)d(c)) whenever a, b and ¢ are in A, then the
map ¢(1)2¢ is multiplicative and therefore ¢ has standard forms when A and
B are the algebras of all bounded linear operators acting on a Hilbert space.

2. Preliminaries

In this section, we collect some properties of the numerical range needed in
the sequel. Let two unital C*-algebras A C B(H) and B C B(K) be given.
By Sp(a) (resp. r(a)) we denote the spectrum (resp. the spectral radius) of an
element a € A. Since it does not lead to misunderstanding, we shall denote the
norms in both algebras by the same symbols || - ||. We denote by #H(.A) the set
of self adjoint elements defined by H(A) = {a € A:a = a*}. It is well-known
that a € H(A) if and only if W(a) C R. Further, an element a € A is positive
if and only if W(a) C R4 (or equivalently ¢ = a* and Sp(a) C R;), where
R, denotes the set of positive real numbers. In the case where A = C(K) for
some Hausdorff compact space K we have W(a) C V(a) = co(a(K)) for each
a € C(K), see [16, Theorem 6]. Here co stands for closed convex hull. We
summarize some other basic properties of the numerical range on the following
lemma. One may see [2, 8] for more information.

Lemma 2.1.

(i) |la|| = w(a) = r(a) for every a € A such that aa* = a*a.
(ii) W(a) = {A} <= a=Al, for everya € A and A € C.
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Finally, recall that a linear map ¢ : A — B is called wnital if (1) = 1,
and it is said to be a Jordan homomorphism if ¥ (a?) = (a)? for all a € A.
Equivalently, the map v is a Jordan homomorphism if and only if ¥ (ab+ ba) =
P(a)(b) + ¥(b)(a) for all @ and b in A. We also recall that the map v is
said to be self-adjoint provided that ¢(a*) = 1 (a)” for all a € A. Self-adjoint
Jordan homomorphisms are called Jordan x-homomorphisms, and by a Jordan
x-isomorphism, we mean a bijective x-homomorphism.

3. Main results and proofs

We start with the following introductory results, which may be of inde-
pendent interest. We give a characterization of elements a,b € A satisfying
W(azx) = W(bzx),Vx € A or w(ax) = w(bzx),Vx € H(A). It is worth observ-
ing that the authors in [3] have recently considered the question whether the
equality Sp(az) = Sp(bz) for every x € A, where a,b € A are fixed elements,
implies ¢ = b. An affirmative answer has been obtained for some classes of
algebras, including C*-algebras.

We begin with the following proposition which gives necessary conditions
which ensure that a = b if w(az) = w(bz),Vz € H(A). The argument of
the proof is borrowed from [11, Lemma 3.4] by slight some modifications. We
present it here for the sake of completeness.

Proposition 3.1. Let A be an unital C*-algebra and a,b € A be two positive
elements such that ab = ba. If w(ax) = w(bzx) for every x € H(A), then a =b.

Proof. Let B be the unital C*-algebra B generated by a and b. Since, ab = ba,
this algebra is commutative. Henceforth, without loss of generality we may
suppose that A is a commutative C*-algebra. On the other hand, it is well
known that every positive element in a C*-algebra has unique square root,
then to prove that a = b, it suffices to show that a2 = b%. Suppose to the
contrary that a? # b%. Since a? — b? is self-adjoint, there exists a non-zero
B € Sp(a? — b?). We may assume that 8 > 0 (otherwise, we could replace
a®> — b® by b> — a?). Let a = 1supSp(a® — b*) > 0, and consider the real
valued continuous function f defined on the spectrum of a? — b? such that
f(2a) = 1,0 < f(A) < 1,VA € Sp(a® — b?) and f(\) =0 < X < a. Put
71 = f(a® — b%) and g(\) = Af(A)?, VA € Sp(a® — b?). So, using functional
calculus (see [6, Theorem 2.9]) and the fact that x1(a? — b?)x; is self adjoint,
we get w(z1(a® — b*)x1) = r(x1(a® — b*)x1) = SUPyegp(az_p2y [9(A)] = 2a. In
addition by using the same argument, it is easily shown that z1(a? — b?)x; >
az?. Now for t € H such that [|t|| = 1, let us define the positive linear
form ¢; by ¢i(a) = (at,t),Va € A. Since ||b||x? — z1b%z; is positive, we have
6]t (23) > @i(z1b%21) > 0. On account of 1 (a? —b?)x1 > ax?, it follows that
oi(r1a221) > (1+”%H)<pt(:c1b2x1). Since 0 < ¢4 (r1a%71) < w(r1a®xy), we infer

that w(zia?z1) > (1 + ﬁ)w(mlb%l). Accordingly ||az1]| > /1 + ﬁ”bxlﬂ >

[b21]|. This obviously contradicts the hypothesis of the proposition, since z1 €
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H(A) and by Lemma 2.1, we have |laz1|| = w(az1) = w(bzy) = ||bxy||. Thus
a = b as desired. O

The next two propositions are crucial for the rest of the paper. They give
a characterization of elements a,b € A satisfying W(az) = W (bz) for every

z € A (or H(A)).

Proposition 3.2. Let A be an unital C*-algebra and a,b € A. If W(az) =
W (bx),Vx € A, then a =b.

Proof. Firstly, assume that a = a*. Since W (b) = W(a) C R, then b* =b. On
the other hand, by observing that W (a?) = W (ba) and the fact that a? is self
adjoint, we infer that (ba)* = ba. By taking into account that (ba)* = a*b* and
that a and b are self adjoint, we get ab = ba. We prove now that a = b. Let B
be the C*-algebra B generated by a and b. Since a and b are self adjoint and
satisfy ab = ba, this algebra is commutative. Hence, it can be identified with
C(K), the algebra of all continuous functions on a compact Hausdorff space K.
Observe also that W (az) = W (bz),Vx € B. We claim that the two functions
a and b have the same sign (both positive, or both negative on K). Indeed,
assuming that there exists ¢; € K such that a(¢1) > 0 and b(t;) < 0. Therefore
there exists an open set Uy such that a(t) > 0 and b(¢) < 0 for all t € U;. By
Urysohn’s lemma, one can find a continuous function ¢; : K — [0, 1] satisfying
¢(t1) = 1 and supp(c) C U;. On the other hand W(ac) C co(ac(K)) and
W(be) C co(be(K)). Then, we get W(ac) C [0,400) and W (bc) C (—o0,0].
Observe that the case where W(ac) = W(be) = {0}, does not occur since
ac # 0. Therefore W(ac) # W (bc), contrary to our assumption. Thus a
and b have the same sign as suggested above. Consequently, without loss of
generality, we can suppose that a,b are positive on U. From the condition
W(azx) = W(bz),Vx € B, we infer that w(az) = w(bx),Vz € B. It follows from
Proposition 3.1 that a = b. We return now to the general case; i.e., if a € A
is arbitrary. Observe that, by assumption, we have, W(aa*x) = W (ba*z) and
W (ab*z) = W (bb*z),Vx € A. Based on the aforesaid, we infer that aa* = ba*
and ab* = bb*. Accordingly, (a — b)(a* — b*) = 0, which implies that a = b.
This ends the proof. ([

Proposition 3.3. If A is a unital C*-algebra and a and b € H(A). If W(ax) =
W (xb),Vr € H(A) or W(az) = W(bx),Vz € H(A), then a =b.

Proof. We give the proof for the condition W (axz) = W (xzb),Va € H(A). For
the other condition the proof is similar. By using a similar reasoning as above,
we can easily prove that ab = ba. Considering the commutative C*-algebras B
generated by a,b and by taking into account that W(ax) = W (bx), Ve € H(B).
By a similar reasoning as in the proof of the above proposition, we can show that
a and b are either both positive or negative. We infer by means of Proposition
3.1 that a =b. (]
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Remark 3.4. The results of Propositions 3.2 and 3.3 are still valid if we replace
the numerical range by its closure. That is if two elements a and b satisfy
V(ax) = V(bz) for every x € A (or in H(A)), then a similar argument can be
used to show that a = b.

At this juncture, we are in a position to characterize surjective mapping satis-
fying

(2a) W(p(a)p(b)p(c)) = W(abe) for all a,b and ¢ € A,

(2b) W(¢p(a)p(b)gp(c)) = W(abc) for all a,b and ¢ € H(A).

Theorem 3.5. Let A and B be two unital C*-algebras. Let ¢ : A — B be
a surjective mapping satisfying (2a). Then ¢(1) € Z(B), ¢(1)® = 1, and
¢ satisfies d(ab) = ¢(1)2¢(a)d(b) for all a and b € A. In particular, the
mapping 1 = ¢(1)%¢ is multiplicative and preserves self-adjoint elements (i.e.,

P(a) € H(B) whenever a € H(A)).

Proof. Set u = ¢(1). Take a = b = c =1 in (2a), we obtain W (u?) = W (1) =
{1}. Thus u® = 1 and hence u is invertible. Given a,b € A such that ¢(a) =
¢(b). By (2a), we have W(ac) = W(up(a)p(c)) = W (ugp(b)p(c)) = W(bc) for
every ¢ € A. By Proposition 3.2, we infer that ¢ = b and ¢ is bijective as
desired. Also, we have W (u¢(a)p(b)) = W (lab) = W(alb) = W(p(a)up(h)).
Thus we get W (up(a)p(b)) = W(p(a)up(b)),Vb € A. Since ¢ is a bijection and
on account of Proposition 3.2, we get ud(a) = ¢(a)u, Va € A. That is to say
that v € Z(B). To end the proof, observe that

W(¢(a)p(b)d(c)) = W(abc) = W (1(ab)c)
= W(up(ab)d(c)),Ve € A.
By recalling that ¢ is bijective, again Proposition 3.2 implies that ¢(ab) =
uLp(a)p(b) = u?P(a)p(b). Now, put 1 = u?¢. We have
P(a)p(b) = u’d(a)ud(b) = up(a)p(b) = u’p(ab) = 1 (ab).

Finally, observe that ¢ preserves self-adjoint elements because for every self
adjoint element a € A, we have W (¢(a)) = W(4(1)*¢(a)) = W(a) C R. The
proof is thus complete. (I

Corollary 3.6. Let A and B be two unital C*-algebras. Let ¢ : A — B be a
surjective mapping satisfying
(3)  Wio(ar)g(az) - d(ap)) = W(araz---ap) for all araz---a, € A

for some integer p € N with p > 3. Then ¢(1) € Z(B), ¢(1)» = 1 and
d(1)P~Lp(aras - - - ap) = d(ar)p(az) - - ¢(ay) for all aras---a, € A.

Proof. Tt is obvious that ¢(1)? = 1. If ¢(a) = ¢(b) for some a,b € A. Since
W(d(a)p(x)p(1)P72) = W((b)d(z)$(1)P~?), by (3), it yields that W(ax) =
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W (bx) for every z € A. By Proposition 3.2, we get a = b. Hence ¢ is a
bijection. Define ¢ = ¢(1)P~1¢. We see that (1) = 1 and

P(a)p(0)y(c) = ¢(1)P~ d(a)p(1)P ™ ¢(b)d(1)"~ d(c) = ¢(1)P~*(a)p(b)(c)-

From (3), we can deduce that W (y(a)y(b)y(c)) = W(abc), Va,b,c € A. By
Theorem 3.5, the results follows. ([l

Based, on Theorem 3.5, we know that if ¢ satisfy (2a), then the mapping
¥ = ¢(1)%¢ is multiplicative. The question of when a multiplicative map is
additive was attacked by several authors. For instance, if 1 is a bijective
map on a standard operator algebra, Molnar showed in [14] that if ¢ satisfies
PY(ABA) = ¢(A)yY(B)y(A), then ¢ is additive. Hence, based on the aforesaid,
when the algebras A and B are the algebras of all bounded linear operators
acting on some Hilbert spaces, Theorem 3.5 can be refined as follows.

Corollary 3.7. Let H and K be complex Hilbert spaces and let ¢ : B(H) —
B(K) be a surjective map (without the assumption of additivity). Then ¢ sat-
isfies Eq. (2a) if and only if there is a unitary operator U : H — K such that
¢ is of the form ¢p(A) = eUAU* for all A € B(H), where €3 = 1.

Proof. Checking the ‘if’ part is straightforward, and we therefore will only deal
with the ‘only if’ part. Assume that ¢ satisfies (2a). By Theorem 3.5, we
have that ¢(1) € Z(B(K)) and ¢(1)®> = 1. Since the algebra B(K) has a
trivial center, then u = ¢(1) = £.1, where ¢ is a complex number such that
e® = 1. Also according to Theorem 3.5, the map ¥ = u?¢, is multiplicative
and (1) = 1. Consequently, by [14] it is additive. Finally, we have shown that
1 is an algebra isomorphism which preserves self-adjoint elements. Thus, by
[4] ¢ takes the following form: ¢(A) = UAU* for all A € B(H) where U is
unitary. O

For mapping ¢ : H(A) — H(B) satisfying (2b), we have a similar result
which follows.

Theorem 3.8. Let A and B be two unital C*-algebras. Let ¢ : H(A) — H(B)
be a surjective mapping satisfying (2b). Then ¢(1) € Z(H(B)), ¢(1)3 =1, and
o = ¢(1), where ¥ is multiplicative.

Proof. The proof is similar to that of Theorem 3.5 by invoking Proposition 3.3.
The details are omitted. O

As a special case of Theorem 3.8 we derive the following result.

Theorem 3.9. Consider the case where A = B(H) and B = B(K) for some
complex Hilbert spaces H and K. Let ¢ : H(A) — H(B) be a surjective map.
Then, ¢ satisfies (2b) if and only if there exists a unitary or conjugate unitary

operator U and ¢ € C such that ¢(A) = eUAU* for all A € H(A) and &3 = 1.
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Proof. The sufficiency is easy to see. Indeed, this follows from the well-known
fact that if U is a unitary or conjugate unitary operator, then W(UAU*) =
W(A) for every A € A. Conversely, suppose that ¢ satisfies Eq. (2b) for
every A € H(A). Theorem 3.8, implies that ¢ = ¢(1)?¢ is multiplicative and
(1) = 1. Therefore, by [1, Theorem 2.1] there exists a unitary or conjugate
unitary operator U such that ¢(A) = UAU* for all A € H(A). To end the
proof observe that ¢ = ui) = ¢(1)¢ and in particular ¢ is linear. Since, by
Theorem 3.8 we have ¢(1) € Z(H(B)), we infer that ¢(1) € Z(B). Therefore,
#(1) = .1, where ¢ is a complex number such that € = 1. Thus, completing
the proof. (I

We give now the following theorem which characterizes surjective maps sat-
isfying (1la) in the case of C*-algebras. This result has been also proved in
[7, Theorem 2.1.] for the Hilbert space operators case but without the extra
condition that ¢ is additive. It would be interesting to remove the additive
assumption in Theorem 3.10 below. We are not able to do that at present.

Theorem 3.10. Let A and B be two unital C*-algebra and ¢ : A — B be a
surjective and additive map satisfying (1a). Then ¢ is a Jordan x-isomorphism
followed by a left multiplication by a fived element u € Z(B) with u® = 1, where
Z(B) stands for the center of B.

Proof. Firstly, we prove that ¢ is bijective. It suffice to show that it is injective.
Let a,b € A such that ¢(a) = ¢(b). By (1a), we have W(é(a)d(c)) = W(ac) =
W(o(b)p(c)) = W(be),Ve € A. By Proposition 3.2, it yields that a = b.
Hence we have proved that ¢ is injective. Take a = b = 1 in (1la), we obtain
W (4(1)?) = W(1) = {1}. Whence ¢(1) is invertible and ¢(1)? = 1. We show
now that ¢ is linear. Let A € C. By (1a) we have

W(Ap(a)g(b)) = AW (g(a)p(b)) = AW (ab)
= W(a)b) = W(s(Aa)p(b)),Ya,b € A.

Whence, by Proposition 3.2, it yields that ¢(Aa) = A¢(a),Va € A. Since ¢ is
additive, we infer that ¢ is a linear bijection. Now, take a,b € A such that
ab = 0. By (1a), yields that ¢(a)¢(b) = 0. Hence [5, Lemma 4.4], implies that
d(1)p(a) = ¢(a)d(1),Va € A. Together with the bijectivity of ¢, this implies
that ¢(1) € Z(B).

Finally, we show that ¢ has the asserted form. Set v = u¢. It suffices
to show that ¢ is C*-isomorphism. It is obvious that ¥(1) = u? = 1 and
W (p(a)(b)) = W(ab),Va,b € A. Thus, we have proved that ¢ is a linear
isomorphism satisfying W (v (a)) = W(a) for every a € A. By [15, Theorem
3.1], the result follows. O

Finally, we turn to the second type of preserver problems involving involu-
tion. We have the following result.
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Theorem 3.11. Let A and B be two unital C*-algebra and ¢ : A — B be a
surjective and additive map satisfying (1b). Then, ¢(1) is unitary and ¢ =
d(1)1, where ¢ is a Jordan x-isomorphism.

Proof. Firstly, observe that by (1b), we have

le(a)]* = ll¢(a)d(a)*|| = w(g(a)d(a)*) = wlaa™) = [aa’|]*,Va € A.
Taking the square root, we obtain ||¢(a)|| = |la||, which yields that ¢ is an

isometry and hence a bijection. Now, let A € C and a € A. For all b € A, we
have

W (A¢(a))*¢(b)) = AW (6(a)*¢(b)) = AW (a”d)
=W ((Aa)*d) = W ((¢(Aa))"$(b)) .

Using Proposition 3.2, we infer that (A¢(a))* = (¢(Aa))*. Accordingly, Ap(a) =
¢(Aa). In consequence of this, ¢ is a linear bijection. Thus, we have proved
that ¢ is a linear isomorphism between two C*-algebras which are isometric.
By [10, Theorem 7], ¢ is a Jordan *-isomorphism followed by left multiplication
by the fixed unitary operator ¢(1). O
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