DOI QR코드

DOI QR Code

곰팡이를 이용한 염료의 탈색 및 생분해

Biodecolorization and Biodegradation of Dye by Fungi: A Review

  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Ryu, Hee Wook (Department of Chemical Engineering, Soongsil University)
  • 투고 : 2015.08.30
  • 심사 : 2015.10.28
  • 발행 : 2015.10.27

초록

In recent years, there has been an intensive research on the application of degradative activities of fungi for treatment of various non-degradable materials such as petroleum hydrocarbons, polychlorinated biphenyls, pesticides, polycyclic aromatic hydrocarbons, dyes and so on. Chief of all, the fungal treatment technology is received the spotlight as one of the most promising alternatives to replace present methods for the treatment of dye wastewater. The present paper reviews the recent trend in research on the decolorization and biodegradation of dyes by various fungi, and improvements in bioreactors and bioprocesses involved the fungal treatment of dye wastewater. It also discusses alternatives and perspectives for the innovation of mycoremediation to treat dye wastewaters.

키워드

참고문헌

  1. Singh, H. (2006) Mycoremediation: Fungal Bioremediation. pp. 420-472. John Wiley & Sons. Inc., Hoboken, New Jersey, Canada.
  2. Fu, Y. and T. Viraraghavan (2001a) Fungal decolorization of dye wastewaters: a review. Bioresour. Technol. 79: 251-262. https://doi.org/10.1016/S0960-8524(01)00028-1
  3. Jin, X.-C., G.-Q. Liu, Z.-H. Xu, and W.-Y. Tao (2007) Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl. Microbiol. Biotechnol. 74: 239-243. https://doi.org/10.1007/s00253-006-0658-1
  4. Banat, I. M., P. Nigam, D. Singh, and R. Marchant (1996) Microbial decolorization of textile-dyecontaining effluents: A review. Bioresour. Technol. 58: 217-227. https://doi.org/10.1016/S0960-8524(96)00113-7
  5. Rai, H. S., M. S. Bhattacharyya, J. Singh, T. K. Bansal, P. Vats, and U. C. Banerjee (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: A review of rmerging techniques with reference to biological treatment. Crit. Rev. Environ. Sci. Technol. 35: 219-238. https://doi.org/10.1080/10643380590917932
  6. Livernoche, D., L. Jurasek, M. Desrochers, and I. A. Veliky (1981) Decolorization of a kraft mill effluent with fungal mycelium immobilized in calcium alginate gel. Biotechnol. Lett. 3: 701-706. https://doi.org/10.1007/BF00134847
  7. Eaton, D., Chang, H. M., and Kirk, T. K. (1980) Fungal decolorization of Kraft bleach plant effluent. Tappi J. 63: 103-109.
  8. Yesilada, O. (1995) Decolourization of crystal violet by fungi. World J. Microbiol. Biotechnol. 11: 601-602. https://doi.org/10.1007/BF00286384
  9. Wu, F., H. Ozaki, Y. Terashima, T. Imada, and Y. Ohkouchi (1996) Activities of ligninolytic enzymes of the white rot fungus, Phanerochaete chrysosporium and its recalcitrant substance degradability. Water Sci. Technol. 34: 69-78. https://doi.org/10.1016/S0273-1223(96)00726-3
  10. Young, L. and J. Yu (1997) Ligninase-catalysed decolorization of synthetic dyes. Water Res. 31: 1187-1193. https://doi.org/10.1016/S0043-1354(96)00380-6
  11. Tatarko, M. and J. A. Bumpus (1998) Biodegradation of congo red by Phanerochaete chrysosporium. Water Res. 32: 1713-1717. https://doi.org/10.1016/S0043-1354(97)00378-3
  12. Conneely, A., W. F. Smyth, and G. McMullan (1999) Metabolism of the phthalocyanine textile dye remazol turquoise blue by Phanerochaete chrysosporium. FEMS Microbiol. Lett. 179: 333-337. https://doi.org/10.1111/j.1574-6968.1999.tb08746.x
  13. Chagas, E. P. and L. R. Durrant (2001) Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microb. Technol. 29: 473-477. https://doi.org/10.1016/S0141-0229(01)00405-7
  14. Yesilada, O., D. Asma, and S. Cing (2003) Decolorization of textile dyes by fungal pellets. Process Biochem. 38: 933-938. https://doi.org/10.1016/S0032-9592(02)00197-8
  15. Pazarlioglu, N. K., R. O. Urek, and F. Ergun (2005) Biodecolourization of Direct Blue 15 by immobilized Phanerochaete chrysosporium. Process Biochem. 40: 1923-1929. https://doi.org/10.1016/j.procbio.2004.07.005
  16. Zeng, G., M. Cheng, D. Huang, C. Lai, P. Xu, Z. Wei, N. Li, C. Zhang, X. He, and Y. He (2015) Study of the degradation of methylene blue by semi-solid-state fermentation of agricultural residues with Phanerochaete chrysosporium and reutilization of fermented residues. Waste Manage. 38: 424-430. https://doi.org/10.1016/j.wasman.2015.01.012
  17. Ollikka, P., K. Alhonmki, V. M. Leppnen, T. Glumoff, T. Raijola, and I. Suominen (1993) Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes bylignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59: 4010-4016.
  18. Levin, L., A. Jordan, F. Forchiassin, and A. Viale (2001) Degradation of anthraquinone blue by Trametes trogii. Rev. Argent. Microbiol. 33: 223-228.
  19. Heinfling, A., M. Bergbauer, and U. Szewzyk (1997) Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl. Microbiol. Biotechnol. 48: 261-266. https://doi.org/10.1007/s002530051048
  20. Toh, Y.-C., J. J. L. Yen, J. P. Obbard, and Y.-P. Ting (2003) Decolourisation of azo dyes by white-rot fungi (WRF) isolated in Singapore. Enzyme Microb. Technol. 33: 569-575. https://doi.org/10.1016/S0141-0229(03)00177-7
  21. Bayramolu, G., and M. Yakup Arica (2007) Biosorption of benzidine based textile dyes "Direct Blue 1 and Direct Red 128" using native and heat-treated biomass of Trametes versicolor. J. Hazard. Mater. 143: 135-143. https://doi.org/10.1016/j.jhazmat.2006.09.002
  22. Yang, X. Q., X. X. Zhao, C. Y. Liu, Y. Zheng, and S. J. Qian (2009) Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochem. 44: 1185-1189. https://doi.org/10.1016/j.procbio.2009.06.015
  23. Wong, Y. and J. Yu (1999) Laccase-catalyzed decolorization of synthetic dyes. Water Res. 33: 3512-3520. https://doi.org/10.1016/S0043-1354(99)00066-4
  24. Maximo, C. and M. Costa-Ferreira (2004) Decolourisation of reactive textile dyes by Irpex lacteus and lignin modifying enzymes. Process Biochem. 39: 1475-1479. https://doi.org/10.1016/S0032-9592(03)00293-0
  25. Novotn, C., K. Svobodov, A. Kasinath, and P. Erbanov (2004) Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. Int. Biodeterior. Biodegrad. 54: 215-223. https://doi.org/10.1016/j.ibiod.2004.06.003
  26. Svobodova, K., M. Senholdt, C. Novotny, and A. Rehorek (2007) Mechanism of reactive orange 16 degradation with the white rot fungus Irpex lacteus. Process Biochem. 42: 1279-1284. https://doi.org/10.1016/j.procbio.2007.06.002
  27. Kalpana, D., J. H. Shim, B.-T. Oh, K. Senthil, and Y. S. Lee (2011) Bioremediation of the heavy metal complex dye Isolan Dark Blue 2SGL-01 by white rot fungus Irpex lacteus. J. Hazard. Mater. 198: 198-205. https://doi.org/10.1016/j.jhazmat.2011.10.030
  28. Kalpana, D., N. Velmurugan, J. H. Shim, B.-T. Oh, K. Senthil, and Y. S. Lee (2012) Biodecolorization and biodegradation of reactive Levafix Blue E-RA granulate dye by the white rot fungus Irpex lacteus. J. Environ. Manage. 111: 142-149. https://doi.org/10.1016/j.jenvman.2012.06.041
  29. Sumathi, S., and V. Phatak (1999) Fungal treatment of bagasse based pulp and paper mill wastes. Environ. Technol. 20: 93-98. https://doi.org/10.1080/09593332008616797
  30. Sumathi, S., and B. S. Manju (2000) Uptake of reactive textile dyes by Aspergillus foetidus. Enzyme Microb. Technol. 27: 347-355. https://doi.org/10.1016/S0141-0229(00)00234-9
  31. Sharma, P., L. Singh, and N. Dilbaghi (2009) Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius. J. Hazard. Mater. 161: 1081-1086. https://doi.org/10.1016/j.jhazmat.2008.04.085
  32. Wunch, K. G., T. Feibelman, and J. W. Bennett (1997) Screening for fungi capable of removing benzo[a]pyrene in culture. Appl. Microbiol. Biotechnol. 47: 620-624. https://doi.org/10.1007/s002530050984
  33. Fu, Y., Viraraghavan, T. (2000) Removal of a dye from an aqueous solution by fungus Aspergillus niger. Water Qual. Res. J. Canada 35: 95-111.
  34. Fu, Y. and T. Viraraghavan (2001b) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv. Environ. Res. 1: 36-40.
  35. Abd El-Rahim, W. M., and H. Moawad (2003) Enhancing bioremoval of textile dyes by eight fungal strains from media supplemented with gelatine wastes and sucrose. J. Basic Microbiol. 43: 367-375. https://doi.org/10.1002/jobm.200310267
  36. Ryu, B.-H. Y. D. W. (1992) Decolorization of azo dyes by Aspergillus sojae B-10. J. Microbiol. Bioechnol. 2: 215-219.
  37. Abd El-Rahim, W. M., H. Moawad, and M. Khalafallah (2003) Microflora involved in textile dye waste removal. J. Basic Microbiol. 43: 167-174. https://doi.org/10.1002/jobm.200390019
  38. Ramya, M., B. Anusha, S. Kalavathy, and S., Devilaksmi (2007) Biodecolorization and biodegradation of Reactive Blue by Aspergillus sp. African J. Biotechnol. 6: 1441-1445.
  39. Kumar, C. G., P. Mongolla, J. Joseph, and V. U. M. Sarma (2012) Decolorization and biodegradation of triphenylmethane dye, brilliant green, by Aspergillus sp. isolated from Ladakh, India. Process Biochem. 47: 1388-1394. https://doi.org/10.1016/j.procbio.2012.05.015
  40. Eichlerov, I., L. Homolka, L. Lis, and F. Nerud (2005) Orange G and Remazol Brilliant Blue R decolorization by white rot fungi Dichomitus squalens, Ischnoderma resinosum and Pleurotus calyptratus. Chemosphere 60: 398-404. https://doi.org/10.1016/j.chemosphere.2004.12.036
  41. Sathiya Moorthi, P., Munuswamy, D., Sellamuthu, P. S., Kandasamy, M., and K. P. Thangavelu (2007) Biosorption of Textile Dyes and Effluents by Pleurotusflorida and Trametes Hirsutawith evaluation of their laccase activity. Biotechnol. 5: 114-118.
  42. Palmieri, G., G. Cennamo, and G. Sannia (2005) Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme Microb. Technol. 36: 17-24. https://doi.org/10.1016/j.enzmictec.2004.03.026
  43. Keliang, Y., H. Wang, X. Zhang, and H. Yu (2009) Bioprocess of triphenylmethane dyes decolorization by Pleurotus ostreatus BP under solid-state cultivation. J. Microbiol. Biotechnol. 19: 1421-1430.
  44. Tychanowicz, G. K., A. Zilly, C. G. M. de Souza, and R. M. Peralta (2004) Decolourisation of industrial dyes by solid-state cultures of Pleurotus pulmonarius. Process Biochem. 39: 855-859. https://doi.org/10.1016/S0032-9592(03)00194-8
  45. Chakraborty, S., B. Basak, S. Dutta, B. Bhunia, and A. Dey (2013) Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresour. Technol. 147: 662-666. https://doi.org/10.1016/j.biortech.2013.08.117
  46. Eichlerov, I., L. Homolka, and F. Nerud (2007) Decolorization of high concentrations of synthetic dyes by the white rot fungus Bjerkandera adusta strain CCBAS 232. Dyes and Pigment. 75: 38-44. https://doi.org/10.1016/j.dyepig.2006.05.008
  47. Kapdan, I. K., F. Kargia, G. McMullan, and R. Marchant (2000) Effect of environmental conditions on biological decolorization of textile dyestuff by C. versicolor. Enzyme Microb. Technol. 26: 381-387. https://doi.org/10.1016/S0141-0229(99)00168-4
  48. Levin, L., L. Papinutti, and F. Forchiassin (2004) Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour. Technol. 94: 169-176. https://doi.org/10.1016/j.biortech.2003.12.002
  49. Vasdev, K., R. Kuhad, and R. Saxena (1995) Decolorization of triphenylmethane dyes by the bird's nest fungus Cyathus bulleri. Curr. Microbiol. 30: 269-272. https://doi.org/10.1007/BF00295500
  50. Yesilada, O., S. Cing, and D. Asma (2002) Decolourisation of the textile dye Astrazon Red FBL by Funalia trogii pellets. Bioresour. Technol. 81: 155-157. https://doi.org/10.1016/S0960-8524(01)00117-1
  51. Park, C., M. Lee, B. Lee, S.-W. Kim, H. A. Chase, J. Lee, and S. Kim (2007) Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochem. Eng. J. 36: 59-65. https://doi.org/10.1016/j.bej.2006.06.007
  52. Zhuo, R., L. Ma, F. Fan, Y. Gong, X. Wan, M. Jiang, X. Zhang, and Y. Yang (2011) Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp. En3 and cloning and functional analysis of its laccase gene. J. Hazard. Mater. 192: 855-873. https://doi.org/10.1016/j.jhazmat.2011.05.106
  53. Ma, L., R. Zhuo, H. Liu, D. Yu, M. Jiang, X. Zhang, and Y. Yang (2014) Efficient decolorization and detoxification of the sulfonated azo dye Reactive Orange 16 and simulated textile wastewater containing Reactive Orange 16 by the white-rot fungus Ganoderma sp. En3 isolated from the forest of Tzu-chin Mountain in China. Biochem. Eng. J. 82: 1-9. https://doi.org/10.1016/j.bej.2013.10.015
  54. Maximo, C., M. T. P. Amorim, and M. Costa-Ferreira (2003) Biotransformation of industrial reactive azo dyes by Geotrichum sp. CCMI 1019. Enzyme Microb. Technol. 32: 145-151. https://doi.org/10.1016/S0141-0229(02)00281-8
  55. Jasinska, A., K. Paraszkiewicz, A. Sip, and J. Dlugonski (2015) Malachite green decolorization by the filamentous fungus Myrothecium roridum - Mechanistic study and process optimization. Bioresour. Technol. 194: 43-48. https://doi.org/10.1016/j.biortech.2015.07.008
  56. Zhang, X., Y. Liu, K. Yan, and H. Wu (2007) Decolorization of anthraquinone-type dye by bilirubin oxidase-producing nonligninolytic fungus Myrothecium sp. IMER1. J. Biosci. Bioeng. 104: 104-110. https://doi.org/10.1263/jbb.104.104
  57. Yang, Q., M. Yang, K. Pritsch, A. Yediler, A. Hagn, M. Schloter, and A. Kettrup (2003) Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates. Biotechnol. Lett. 25: 709-713. https://doi.org/10.1023/A:1023454513952
  58. Zhang, S. J., M. Yang, Q. X. Yang, Y. Zhang, B. P. Xin, and F. Pan (2003) Biosorption of reactive dyes by the mycelium pellets of a new isolate of Penicillium oxalicum. Biotechnol. Lett. 25: 1479-1482. https://doi.org/10.1023/A:1025036407588
  59. Jasiska, A., S. Ralska, P. Bernat, K. Paraszkiewicz, and J. Dlugoski (2012) Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. Int. Biodeterior. Biodegrad. 73: 33-40. https://doi.org/10.1016/j.ibiod.2012.06.025
  60. Zheng, Z., R. E. Levin, J. L. Pinkham, and K. Shetty (1999) Decolorization of polymeric dyes by a novel Penicillium isolate. Process Biochem. 34: 31-37. https://doi.org/10.1016/S0032-9592(98)00061-2
  61. Kirby, N., R. Marchant, and G. McMullan (2000) Decolourisation of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol. Lett. 188: 93-96. https://doi.org/10.1111/j.1574-6968.2000.tb09174.x
  62. Das, S. K., J. Bhowal, A. R. Das, and A. K. Guha (2006) Adsorption Behavior of Rhodamine B on Rhizopus oryzae Biomass. Langmuir 22: 7265-7272. https://doi.org/10.1021/la0526378
  63. Renganathan, S., W. R. Thilagaraj, L. R. Miranda, P. Gautam, and M. Velan (2006) Accumulation of acid orange 7, acid red 18 and reactive black 5 by growing Schizophyllum commune. Bioresour. Technol. 97: 2189-2193. https://doi.org/10.1016/j.biortech.2005.09.018
  64. Asgher, M., Q. Yasmeen, and H. M. N. Iqbal (2013) Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi J. Biol. Sci. 20: 347-352. https://doi.org/10.1016/j.sjbs.2013.03.004
  65. Selvam, K., K. Swaminathan, and K.-S. Chae (2003) Decolourization of azo dyes and a dye industry effluent by a white rot fungus Thelephora sp. Bioresour. Technol. 88: 115-119. https://doi.org/10.1016/S0960-8524(02)00280-8
  66. Wesenberg, D., I. Kyriakides, and S. N. Agathos (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161-187. https://doi.org/10.1016/j.biotechadv.2003.08.011
  67. Hatakka, A. (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiol. Rev. 13: 125-135. https://doi.org/10.1111/j.1574-6976.1994.tb00039.x
  68. Rodriguez Couto, S., and M. A. Sanromn (2005) Application of solid-state fermentation to ligninolytic enzyme production. Biochem. Eng. J. 22: 211-219. https://doi.org/10.1016/j.bej.2004.09.013
  69. Winquist, E., U. Moilanen, A. Mettl, M. Leisola, and A. Hatakka (2008) Production of lignin modifying enzymes on industrial waste material by solid-state cultivation of fungi. Biochem. Eng. J. 42: 128-132. https://doi.org/10.1016/j.bej.2008.06.006
  70. Hakala, T. K., T. Lundell, S. Galkin, P. Maijala, N. Kalkkinen, and A. Hatakka (2005) Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme Microb. Technol. 36: 461-468. https://doi.org/10.1016/j.enzmictec.2004.10.004
  71. Levin, L., C. Herrmann, and V. L. Papinutti (2008) Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem. Eng. J. 39: 207-214. https://doi.org/10.1016/j.bej.2007.09.004
  72. Kachlishvili, E., M. Penninckx, N. Tsiklauri, and V. Elisashvili (2006) Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World J. Microbiol. Biotechnol. 22: 391-397. https://doi.org/10.1007/s11274-005-9046-8
  73. Pinto, P. A., A. A. Dias, I. Fraga, G. Marques, M. A. M. Rodrigues, J. Colao, A. Sampaio, and R. M. F. Bezerra (2012) Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresour. Technol. 111: 261-267. https://doi.org/10.1016/j.biortech.2012.02.068
  74. Fujian, X., C. Hongzhang, and L. Zuohu (2001) Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour. Technol. 80: 149-151. https://doi.org/10.1016/S0960-8524(01)00082-7
  75. Liang, Y.-S., X.-Z. Yuan, G.-M. Zeng, C.-L. Hu, H. Zhong, D.-L. Huang, L. Tang, and J.-J. Zhao (2010) Biodelignification of rice straw by Phanerochaete chrysosporium in the presence of dirhamnolipid. Biodegradation 21: 615-624. https://doi.org/10.1007/s10532-010-9329-0
  76. Li, H., R. Zhang, L. Tang, J. Zhang, and Z. Mao (2015) Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Chinese J. Chem. Eng. 23: 227-233. https://doi.org/10.1016/j.cjche.2014.11.001
  77. Andleeb, S., N. Atiq, G. Robson, and S. Ahmed (2012) An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environ. Sci. Pollut. Res. 19: 1728-1737. https://doi.org/10.1007/s11356-011-0687-x
  78. Nilsson, I., A. Mller, B. Mattiasson, M. S. T. Rubindamayugi, and U. Welander (2006) Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzyme Microb. Technol. 38: 94-100. https://doi.org/10.1016/j.enzmictec.2005.04.020
  79. Iandolo, D., A. Amore, L. Birolo, G. Leo, G. Olivieri, and V. Faraco (2011) Fungal solid state fermentation on agro-industrial wastes for acid wastewater decolorization in a continuous flow packed-bed bioreactor. Bioresour. Technol. 102: 7603-7607. https://doi.org/10.1016/j.biortech.2011.05.029
  80. Rodriguez Couto, S. R., E. Rosales, and M. A. Sanromn (2006) Decolourization of synthetic dyes by Trametes hirsuta in expanded-bed reactors. Chemosphere 62: 1558-1563. https://doi.org/10.1016/j.chemosphere.2005.06.042
  81. Hai, F. I., K. Yamamoto, F. Nakajima, and K. Fukushi (2008) Removal of structurally different dyes in submerged membrane fungi $reactor^{{\circ}TM}$Biosorption/PAC-adsorption, membrane retention and biodegradation. J. Membr. Sci. 325: 395-403. https://doi.org/10.1016/j.memsci.2008.08.006
  82. Dominguez, A., I. Rivela, S. R. g. Couto, and M. A. Sanromn (2001) Design of a new rotating drum bioreactor for ligninolytic enzyme production by Phanerochaete chrysosporium grown on an inert support. Process Biochem. 37: 549-554. https://doi.org/10.1016/S0032-9592(01)00233-3
  83. Kapdan, K. I., and F. Kargi (2002) Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotating biological contactor. Enzyme Microb. Technol. 30: 195-199. https://doi.org/10.1016/S0141-0229(01)00468-9
  84. Ge, Y., L. Yan, and K. Qinge (2004) Effect of environment factors on dye decolorization by P. sordida ATCC90872 in a aerated reactor. Process Biochem. 39: 1401-1405. https://doi.org/10.1016/S0032-9592(03)00273-5
  85. Sima, J., J. Pocedi, T. Roubkov, and P. Hasal (2012) Rotating drum biological contactor and its application for textile dyes decolorization. Procedia Eng. 42: 1579-1586. https://doi.org/10.1016/j.proeng.2012.07.551
  86. Malachova, K., Z. Rybkova, H. Sezimova, J. Cerven, and C. Novotny (2013) Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater. Water Res. 47: 7143-7148. https://doi.org/10.1016/j.watres.2013.07.050
  87. Mielgo, I., M. T. Moreira, G. Feijoo, and J. M. Lema (2002) Biodegradation of a polymeric dye in a pulsed bed bioreactor by immobilised Phanerochaete chrysosporium. Water Res. 36: 1896-1901. https://doi.org/10.1016/S0043-1354(01)00384-0
  88. Kasinath, A., C. Novotny, K. Svobodova, K. C. Patel, and V. Sasek (2003) Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor. Enzyme Microb. Technol. 32: 167-173. https://doi.org/10.1016/S0141-0229(02)00279-X
  89. Rodriguez Couto, S., M. A. Sanromn, D. Hofer, and G. M. Gubitz (2004) Stainless steel sponge: a novel carrier for the immobilisation of the white-rot fungus Trametes hirsuta for decolourization of textile dyes. Bioresour. Technol. 95: 67-72. https://doi.org/10.1016/j.biortech.2003.05.002
  90. Leidig, E., U. Prsse, K. D. Vorlop, and J. Winter (1999) Biotransformation of Poly R-478 by continuous cultures of PVAL-encapsulated Trametes versicolor under non-sterile conditions. Bioprocess Eng. 21: 5-12.
  91. Karimi, A., F. Vahabzadeh, and B. Bonakdarpour (2006) Use of Phanerochaete chrysosporium immobilized on kissiris for synthetic dye decolourization: Involvement of manganese peroxidase. World J. Microbiol. Biotechnol. 22: 1251-1257. https://doi.org/10.1007/s11274-006-9169-6
  92. Cheng, Z., W. Xiang-hua, and N. Ping (2013) Continuous Acid Blue 45 decolorization by using a novel open fungal reactor system with ozone as the bactericide. Biochem. Eng. J. 79: 246-252. https://doi.org/10.1016/j.bej.2013.08.010
  93. Kim, T.-H., Y. Lee, J. Yang, B. Lee, C. Park, and S. Kim (2004) Decolorization of dye solutions by a membrane bioreactor (MBR) using white-rot fungi. Desalination 168: 287-293. https://doi.org/10.1016/j.desal.2004.07.011
  94. Hai, F. I., K. Yamamoto, and K. Fukushi (2006) Development of a submerged membrane fungi reactor for textile wastewater treatment. Desalination 192: 315-322. https://doi.org/10.1016/j.desal.2005.06.050
  95. Sathian, S., G. Radha, V. Shanmugapriya, M. Rajasimman, and C. Karthikeyan (2013) Optimization and kinetic studies on treatment of textile dye wastewater using Pleurotus floridanus. Appl. Water Sci. 3: 41-48. https://doi.org/10.1007/s13201-012-0055-0
  96. Sathian, S., M. Rajasimman, G. Radha, V. Shanmugapriya, and C. Karthikeyan (2014) Performance of SBR for the treatment of textile dye wastewater: Optimization and kinetic studies. Alexandria Eng. J. 53: 417-426. https://doi.org/10.1016/j.aej.2014.03.003
  97. Kadam, A. A., A. A. Telke, S. S. Jagtap, and S. P. Govindwar (2011) Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation. J. Hazard. Mater. 189: 486-494. https://doi.org/10.1016/j.jhazmat.2011.02.066
  98. Pan, K., N. Zhao, Q. Yin, T. Zhang, X. Xu, W. Fang, Y. Hong, Z. Fang, and Y. Xiao (2014) Induction of a laccase Lcc9 from Coprinopsis cinerea by fungal coculture and its application on indigo dye decolorization. Bioresour. Technol. 162: 45-52. https://doi.org/10.1016/j.biortech.2014.03.116
  99. Kuhar, F., V. Castiglia, and L. Levin (2015) Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and Trametes versicolor in solid-state fermentation. Int. Biodeterior. Biodegrad. 104: 238-243. https://doi.org/10.1016/j.ibiod.2015.06.017
  100. Qu, Y., S. Shi, F. Ma, and B. Yan (2010) Decolorization of Reactive Dark Blue K-R by the synergism of fungus and bacterium using response surface methodology. Bioresour. Technol. 101: 8016-8023. https://doi.org/10.1016/j.biortech.2010.05.025
  101. Gou, M., Y. Qu, J. Zhou, F. Ma, and L. Tan (2009) Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures. J. Hazard. Mater. 170: 314-319. https://doi.org/10.1016/j.jhazmat.2009.04.094
  102. Si, J., F. Peng, and B. Cui (2013) Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens. Bioresour. Technol. 128: 49-57. https://doi.org/10.1016/j.biortech.2012.10.085
  103. Yan, J., J. Niu, D. Chen, Y. Chen, and C. Irbis (2014) Screening of Trametes strains for efficient decolorization of malachite green at high temperatures and ionic concentrations. Int. Biodeterior. Biodegrad. 87: 109-115. https://doi.org/10.1016/j.ibiod.2013.11.009
  104. Si, J. and B.-K. Cui (2013) A new fungal peroxidase with alkaline-tolerant, chloride-enhancing activity and dye decolorization capacity. J. Mol. Catal. B-Enzym. 89: 6-14. https://doi.org/10.1016/j.molcatb.2012.12.002
  105. Chen, W., L. Zheng, R. Jia, and N. Wang (2015) Cloning and expression of a new manganese peroxidase from Irpex lacteus F17 and its application in decolorization of reactive black 5. Process Biochem. doi:10.1016/j.procbio.2015.07.009
  106. Mu, Y., K. Rabaey, R. A. Rozendal, Z. Yuan, and J. Keller (2009) Decolorization of azo dyes in bioelectrochemical systems. Environ. Sci. Technol. 43: 5137-5143. https://doi.org/10.1021/es900057f
  107. Sun, J., Y.-y. Hu, Z. Bi, and Y.-q. Cao (2009) Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresour. Technol. 100: 3185-3192. https://doi.org/10.1016/j.biortech.2009.02.002
  108. Li, Z., X. Zhang, J. Lin, S. Han, and L. Lei (2010) Azo dye treatment with simultaneous electricity production in an anaerobicaerobic sequential reactor and microbial fuel cell coupled system. Bioresour. Technol. 101: 4440-4445. https://doi.org/10.1016/j.biortech.2010.01.114
  109. Kalathil, S., J. Lee, and M. H. Cho (2011) Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnol. 29: 32-37. https://doi.org/10.1016/j.nbt.2011.04.014

피인용 문헌

  1. Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43 vol.52, pp.9, 2017, https://doi.org/10.1080/10934529.2017.1316164
  2. Microbial Electrochemical System: A Sustainable Approach for Mitigation of Toxic Dyes and Heavy Metals from Wastewater vol.25, pp.2, 2021, https://doi.org/10.1061/(asce)hz.2153-5515.0000590