DOI QR코드

DOI QR Code

Simultaneous Enantiomer Separation of α-Amino Acids and Their Esters as Fluorenylmethoxycarbonyl Derivatives under UV and Fluorescence Detection by High Performance Liquid Chromatography

고성능 액체 크로마토그래피에서 아미노산과 이들 에스테르의 플루오레닐메톡시카르보닐 유도체의 자외선과 형광 검출에서의 동시 광학분리

  • Received : 2015.05.11
  • Accepted : 2015.07.28
  • Published : 2015.08.27

Abstract

Liquid chromatographic enantiomer separation of ${\alpha}$-amino acids and their methyl and ethyl esters as fluorenylmethoxycarbonyl (FMOC) derivatives was performed using a recently developed chiral column (Chiralpak IE) based on polysaccharide derivative under simultaneous UV detection and fluorescence detection. The degree of enantiomer separation of ${\alpha}$-amino acid esters as FMOC derivatives is generally higher than that of the corresponding ${\alpha}$-amino acids. Especially, ${\alpha}$-amino acid methyl esters showed the greatest enantioseparation. As this method developed in this study can be applied to determine the chemical and optical purity of ${\alpha}$-amino acids and esters, it is expected to be quite useful for their chiral separation using Chiralpak IE.

Keywords

References

  1. Yashima, E. (2001) Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation, J. Chromatogr. A 906: 105-125. https://doi.org/10.1016/S0021-9673(00)00501-X
  2. Chankvetadze, B. (2012) Recent developments on polysaccharidebased chiral stationary phases for liquid-phase separation of enantiomers, J. Chromatogr. A 1269: 26-51. https://doi.org/10.1016/j.chroma.2012.10.033
  3. Application Guide for Chiral HPLC selection, 4th ed., (2008) Daicel Chemical Industries, Ltd. Japan.
  4. Zhang, T., C. Kientzy, P. Franco, A. Ohnishi, Y. Kagamihara, and H. Kurosawa (2005) Solvent versatility of immobilized 3,5-dimethylphenylcarbamate of amylose in enantiomeric separations by HPLC. J. Chromatogr. A 1075: 65-75. https://doi.org/10.1016/j.chroma.2005.03.116
  5. Zhang, T., D. Nguyen, P. Franco, T. Murakami, A. Ohnishi, and H. Kurosawa (2006) Cellulose 3,5-dimethylphenylcarbamate immobilized on silica: A new chiral stationary phase for the analysis of enantiomers. Anal. Chim. Acta 557: 221-228. https://doi.org/10.1016/j.aca.2005.10.017
  6. Jin, J. Y., W. Lee, J. H. Park, and J. J. Ryoo (2007) Liquid chromatographic enantiomer separation of N-phthaloyl protected $\alpha$- amino acids on coated and immobilized chiral stationary phases derived from polysaccharide derivatives. J. Liq. Chrom. & Rel. Tech. 30: 1-9. https://doi.org/10.1080/10826070601034170
  7. Jin, J. Y., W. Lee, and C. -S. Baek (2008) Enantiomer resolution of non-steroidal anti-inflammatory drugs on chiral stationary phases derived from polysaccharide derivatives. Chin. J. Anal. Chem. 36: 1207-1211. https://doi.org/10.1016/S1872-2040(08)60067-5
  8. Jin, J. Y., S. K, Bae, and W. Lee (2009) Comparative studies between covalently immobilized and coated chiral stationary phases based on polysaccharide derivatives for enantiomer separation of N-protected α-amino acids and their ester derivatives. Chirality 21: 871-877. https://doi.org/10.1002/chir.20680
  9. Huang, H., W. J. Xu, J. Y. Jin, J. H. Hong, H. J. Shin and W. Lee (2012) A convenient method for the enantiomeric separation of α- amino acid esters as benzophenone imine Schiff base derivatives. Arch. Pharm. Res. 35: 1015-1019. https://doi.org/10.1007/s12272-012-0609-6
  10. Zhang, T., P. Franco, D. Nguyen, R. Hamasaki, S. Miyamoto, A. Ohnishi, and T. Murakami (2012) Complementary enantiorecognition patterns and specific method optimization aspects on immobilized polysaccharide-derived chiral stationary phases. J. Chromatogr. A 1269: 178-188. https://doi.org/10.1016/j.chroma.2012.09.071
  11. DaSilva, J. O., B. Coes, L. Frey, I. Mergelsberg, R. McClain, L. Nogle, and C. J. Welch (2014) Evaluation of non-conventional polar modifiers on immobilized chiral stationary phases for improved resolution of enantiomers by supercritical fluid chromatography. J. Chromatogr. A 1328: 98-103. https://doi.org/10.1016/j.chroma.2013.12.073
  12. Lee, J., J. T. Lee, W. L. Watts, J. Barendt, T. Q. Yan, Y. Huang, F. Riley, M. Hardink, J. Bradow, and P. Franco (2014) On the method development of immobilized polysaccharide chiral stationary phases in supercritical fluid chromatography using an extended range of modifiers. J. Chromatogr. A 1374: 238-246. https://doi.org/10.1016/j.chroma.2014.11.044
  13. Burgess, K., (2000) Solid-Phase Organic Synthesis. 3rd ed., John Wiley & Sons, NY, USA.
  14. Greene, T. W., and P. G. M. Wuts, (1999) Protective Groups in Organic Synthesis. 3rd ed., John Wiley & Sons, NY, USA.
  15. Lee, K.-A., S. Yeo, K. H. Kim, W. Lee, and J. S. Kang (2008) Enantioseparation of N-fluorenylmethoxycarbonyl α-amino acids on polysaccharide-derived chiral stationary phases by reverse mode liquid chromatography. J. Pharm. Biomed. Anal. 46: 914-919. https://doi.org/10.1016/j.jpba.2008.01.012
  16. Jin, J. Y., W. Lee, J. H. Park, and J. J. Ryoo (2006) Covalently bonded and coated chiral stationary phases derived from polysaccharide derivatives for enantiomer separation of N-fluorenylmethoxycarbonyl $\alpha$-amino acids with fluorescence detection. J. Liq. Chrom. & Rel. Tech. 29: 1793-1801. https://doi.org/10.1080/10826070600717007
  17. Li, Y. H., C.-S. Baek, B. W. Jo, and W. Lee (2005) Direct chiral separation of N-fluorenylmethoxycarbonyl α-amino acids by HPLC for determination of enantiomeric purity, Bull. Kor. Chem. Soc. 26: 998-1000. https://doi.org/10.5012/bkcs.2005.26.6.998
  18. Bodansky, M. and A. Bodansky (1984) The Practice of Peptide Synthesis. Springer, NY, USA.