DOI QR코드

DOI QR Code

알코올의 농도에 따른 실크 비드의 적외선 분광 특성

Effect of ethanol concentration on the infrared spectroscopic characteristics of silk beads

  • 김성국 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 조유영 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 이광길 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 김기영 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 김현복 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 권해용 (농촌진흥청 국립농업과학원 잠사양봉소재과)
  • Kim, Sung-Kuk (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Jo, You-Young (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Kwang-Gill (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Kee-Young (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Hyun-bok (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kweon, HaeYong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
  • 투고 : 2015.09.17
  • 심사 : 2015.10.26
  • 발행 : 2015.10.31

초록

알코올의 농도 변화에 따른 실크단백질의 구조전이 효과에 대하여 살펴보기 위하여 백옥잠 누에고치를 이용하여 실크단백질 용액을 제조하였다. 알코올의 농도를 100%, 70%, 50%로 조절하여 제조한 실크 비드의 적외선 분광 분석을 하였다. 고농도(100%) 알코올로 처리한 실크단백질은 전형적인 ${\beta}-sheet$ 구조를 반영하는 $1265cm^{-1}$ 부근에서 흡수대를 보였으며 모델 약물로 사용한 4HR의 특성 피크는 관찰되지 않았다. 알코올의 농도를 70%, 50%로 조절하여 처리한 경우에는 모델 약물의 흡수대인 $2933cm^{-1}$ 부근, $1069cm^{-1}$ 부근, 그리고 $973cm^{-1}$ 부근의 흡수대가 발현되었다. 이러한 결과는 알코올의 농도에 따라 조성되는 실크단백질의 미세 구조에 차이가 있음을 나타내며, 보다 정밀한 실크단백질 구조 제어를 위한 추가 연구가 필요한 것으로 생각된다.

The structural transition of silk protein has been induced by various method including alcohol treatment. To know the effect of alcohol concentration on silk beads conformation, silk beads were prepared in different alcohol concentration (100%, 70%, and 50%) and then examined the infrared spectra of silk beads. Silk beads prepared in 100% alcohol showed at $1265cm^{-1}$ attributed ${\beta}-sheet$ conformation and did not showed a characteristic absorption peak from model drug. However, silk beads in 70% and 50% alcohol showed some peaks originated from model drug including $2933cm^{-1}$, $1069cm^{-1}$, and $973cm^{-1}$. These results means that the micro-environment of silk beads was affected by alcohol concentration.

키워드

참고문헌

  1. Chavidi VP, Bala YS, Chanda LNR, Kokkarachedu VP, Posa S, Subha MCS (2012) Formulation and characterization of sodium alginate g-hydroxy ethylacrylate bio-degradable polymeric beads: in vitro release studies. J Polym Environ 20, 344-350. https://doi.org/10.1007/s10924-011-0401-6
  2. Cho HY, Baik YA, Jeon SY, Kwak YH, Kweon HY, Jo YY, Lee KG, Park YH, Kang DC (2013) Growth and osteoblastic differentiation of mesenchymal stem cells on silk scaffolds. Int J Indust Entomol 27, 303-311. https://doi.org/10.7852/ijie.2013.27.2.303
  3. Hu X, Kaplan D, Cebe P (2006) Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromol 39(18), 6161-6170. https://doi.org/10.1021/ma0610109
  4. Kim J, Kim CH, Park CH, Seo JN, Kweon HY, Kang SW, Lee KG (2010) Comparison of methods for the repair of acute tympanic membrane perforations: silk patch vs paper patch. Wound Rep Regen 18, 132-138. https://doi.org/10.1111/j.1524-475X.2009.00565.x
  5. Kim SK, Jo YY, Lee KG, Lee HS, Yeo JH, Kweon HY (2014) Preparation and characterization of silk beads for protein delivery system. Int J Indust Entomol 28, 66-70. https://doi.org/10.7852/ijie.2014.28.2.66
  6. Kweon HY, Jo YY, Lee KG, Kim HB, Yeo JH (2014) Silk polymer for medical applications. J Seric Entomol Sci 52, 89-95.
  7. Kweon HY, Kim SG, An JH, Shim HW, Yang BE, Kim JY, Jo YY, Yeo JH, Lee KG (2010a) Silk fibroin membrane as guided bone regeneration in rat calvarial defects. Int J Indust Entomol 21, 175-179.
  8. Kweon HY, Yeo JH, Woo SO, Han SM, Jo YY, Lee KG (2010b) Preparation and characterization of silk fibroin nanoparticles. Int J Indust Entomol 20, 25-28.
  9. Kweon HY, Park YH (1999) Structural and conformational changes of regenerated Antheraea pernyi silk fibroin films treated tith methanol solution. J Appl Polym Sci 73, 2887-2894. https://doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2887::AID-APP12>3.0.CO;2-I
  10. Lee K, Kweon H, Yeo J, Woo SO, Lee YW, Cho CS, Kim KH, Park YH (2003) Effect of methyl alcohol on the morphology and conformational characteristics of silk sericin. Int J Biol Macromol 33, 75-80. https://doi.org/10.1016/S0141-8130(03)00069-2
  11. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2), 147-155. https://doi.org/10.1016/j.biomaterials.2004.02.047
  12. Minoura N, Aiba SI, Higuchi M, Gotoh Y, Tsukada M, Imai Y (1995) Attachment and growth of fibroblast cells on silk fibroin. Biochem Biophys Res Commun 208(2), 511-516. https://doi.org/10.1006/bbrc.1995.1368
  13. Nam J, Park YH (2001) Morphology of regenerated silk fibroin: Effects of freezing temperature, alcohol addition, and molecular weight. J Appl Polym Sci 81, 3008-3021. https://doi.org/10.1002/app.1751
  14. Seok H, Lee SW, Kim SG, Seo DH, Kim HS, Kweon HY, Jo YY, Kang TY, Lee MJ, Chae WS (2013) The effect of silk mem-brane plus 3% 4-hexylresorcinol on guided bone generation in a rabbit calvarial defect model. Int J Indust Entomol 27, 209-217. https://doi.org/10.7852/ijie.2013.27.1.209
  15. Silva SS, Motta A, Rodrigues MT, Pinheiro AFM, Gomes ME, Mano JF, Reis RL, Migliaresi C (2008) Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies. Biomacromol 9(10), 2764-2774. https://doi.org/10.1021/bm800874q
  16. Tsukada M (1986) Structural changes induced in tussah silk (Antheraea pernyi) fibroin films by immersion in methanol. J Polym Sci Pt B-Polym Phys 24, 1227-1232.
  17. Vepari C, Kaplan DL (2007) Silk as biomaterial. Prog Polym Sci 32, 991-1007. https://doi.org/10.1016/j.progpolymsci.2007.05.013
  18. Woo SO, Kweon HY, Um IC, Park YH (2000) Structural characteristics of regenerated Antheraea pernyi silk fibroin treated with ethanol. Korean J Seric Sci 42(2), 114-119.
  19. Zhao CX, Wu XF, Zhang QA, Yang SQ, Li MZ (2011) Enzymatic degradation of Antheraea pernyi silk fibroin 3D scaffolds and fibers. Int J Biol Macromol 48(2), 249-255. https://doi.org/10.1016/j.ijbiomac.2010.11.004