DOI QR코드

DOI QR Code

Research Trend and Characteristic of Imported Functional Grains

기능성 수입곡물의 특성 및 연구 동향

  • Published : 2015.06.30

Abstract

Keywords

References

  1. Lee JH. New beneficial crops amaranth and quinoa for food nutritional source. Food industry and nutrition. 12: 29-36 (2007)
  2. FAO. Quinoa. (http://www.fao.org/quinoa-2013/what-is-quinoa/origin-and-history/en/)
  3. Koziol M. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis. 5: 35-68 (1992) https://doi.org/10.1016/0889-1575(92)90006-6
  4. Korea Customs Service. (http://www.customs.go.kr/kcsweb/user.tdf?a=user.newTradestatistics.NewTradestatisticsApp&c=1003&mc=STATS_INQU_TRADE_020)
  5. Lee JH, Kim KJ, Lee J, Lee ST, Ryu SN. Functional ingredient and their some variance in amaranth and quinoa. Korean J. Crop Sci. 41: 145-165 (1996)
  6. Berganza BE, Moran AW, Rodriguez MG Coto NM, Santamaria M, Bressani. Effect of Variety and Location on the Total Fat, Fatty Acids and Squalene Content of Amaranth. Plant Foods for Human Nutri. 58: 1-6 (2003)
  7. Jo, HJ, Kim JW, Yoon JA, Kim KI, Chung KH, Song BC, An JH. Antioxidant activities of Amaranth(Amaranth spp. L.) flower extracts. Korean J. Food Nutr. 2: 175-182 (2014)
  8. Plate AYA, Areas JAG. Cholesterol-lowering effect of extruded amaranth (Amaranthus caudatus L.) in hypercholesterolemic rabbits. Food Chem. 76: 1-6 (2002) https://doi.org/10.1016/S0308-8146(01)00238-2
  9. Bergamo P, Maurano F, mazzarella G, Iaquinto G, Vocca I, Rivelli AR, Falco ED, Gianfrani C, Rossi M. Immunological evaluation of the alcohol-soluble protein fraction from gluten-free grains in relation to celiac disease. Mol. Nutr. Food Res. 55: 1266-1270 (2011) https://doi.org/10.1002/mnfr.201100132
  10. Czerwinskia J, Bartnikowskab Z, Leontowicza H, Langeb E, Leontowicza M, Katrichc E, Trakhtenbergd S, Gorinsteinc S. Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol containing diets. J. nutritional biochem. 15: 622-629 (2004) https://doi.org/10.1016/j.jnutbio.2004.06.002
  11. Alvarez-Jubetea L, Arendtb EK. Gallaghera E. Nutritive value of pseudocereals and their increasing use as functional gluten free ingredients. Trend in Food Sci. Technol. 21: 106-113 (2010) https://doi.org/10.1016/j.tifs.2009.10.014
  12. Mariotti M, Lucisano M, Pagani MA, Ng PKW. The role of corn starch, amaranth flour, pea isolate, and Psyllium flour on the rheological properties and the ultrastructure of gluten-free doughs. Food Research International 42: 963-975 (2009) https://doi.org/10.1016/j.foodres.2009.04.017
  13. Gambus, H., Gambus, F., & Sabat, R. Quality improvement of gluten-free bread by Amaranthus flour. Zywnosc, 9: 99-112 (2002)
  14. Rayas-duarte P, Mock CM, Satterlee LD. Quality of Spaghetti Containing Buckwheat, Amaranth, and Lupin Flours. Cereal Chem. 73: 381-387 (1996)
  15. Caselato-Sousa VM, Ameava-Farfan J. State of knowledge on amaranth grain: A comprehensive review. J. Food Sci. 77: 93-104 (2012) https://doi.org/10.1111/j.1750-3841.2012.02645.x
  16. Cho SG, Kays SJ. Aroma-activity compounds of wild rice(Zizania palustris L.) 52: 1463-1470 (2013)
  17. RDA database. (http://www.rda.go.kr/children/farm/rice_heal_08.jsp?child_menu_id=menu_s2)
  18. Przybylski R, Klensporf-Pawlik D, Anwar F, Rudzinska M. Lipid components of north american wild rice(Zizania palustris) J. Am. Oil Chem, Soc. 86: 553-559 (2009) https://doi.org/10.1007/s11746-009-1383-6
  19. Hoover R, Sailaja Y, Sosulski FW. Characterization of starches from wild and long grain brown rice. Food Res Int. 29: 99-107 (1996) https://doi.org/10.1016/0963-9969(96)00016-6
  20. Wang HL, Swain EW, Hesseltine CW, Gumbmann. Protein quality of wild rice. J. Agric. Food Chem. 26: 309-312 (1978) https://doi.org/10.1021/jf60216a046
  21. Qiu Y, Liu Qin, Beta T. Antioxidant activity of commercial wild rice and identification of flavonoid compounds in active fraction. J. Agri. Food Chem. 57: 7543-7551 (2009) https://doi.org/10.1021/jf901074b
  22. Kang TS, Jeong HS, Park HJm Lee MY, Kong YJ, Jung IS. Biological activities of oat soluble ${\beta}$-glucans. Korean J. Food Preserv. 10: 547-553 (2003)
  23. Lee JA, Park GS, Ahn SH. Comparative of physicochemical and sensory quality characteristics of cookies added with barleys and oatmeals. Korean J Food Cook Sci 18: 238-246 (2002)
  24. Othman RA, Moqhadasian MH, Jones PJ. Cholesterol-lowing effects of oat ${\beta}$-glucans. Nutr. Rev. 69: 299-309 (2011) https://doi.org/10.1111/j.1753-4887.2011.00401.x
  25. Braaten JT, Wood PJ, Scott FW, Wolynetz MS, Lowe MK, Bradley-White P, Collins MW. Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. European J. Chlinical Nutr. 48: 465-474 (1994)
  26. Kerckhoffs AJMD, Hornstra G, Mensink RP. Cholesterol-lowering effect of ${\beta}$-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when ${\beta}$-glucan is incorporated into bread and cookies. Am J Clin Nutr 78: 221-227 (2003) https://doi.org/10.1093/ajcn/78.2.221
  27. Lee YK, Lee HS, Kim BW. Effect of short-term feeding of dietary fiber supplements on glucose metabolism in subjects with non-insulin-dependent diabetes mellitus. J Korean Soc. Food Sci Nutr 25: 846-854 (1996)
  28. Kang SA, Jang KH, Hong KH, Choi WA, Jung KH, Lee IY. Effects of dietary ${\beta}$-glucan on adiposity and serum lipids levels in obese rats induced by high fat diet. J Korean Soc Food Sci Nutr 31: 1052-1057 (2002) https://doi.org/10.3746/jkfn.2002.31.6.1052
  29. Peterson DM. Oat antioxidant. J. Cereal Sci. 33: 115-129 (2001) https://doi.org/10.1006/jcrs.2000.0349
  30. Pearce, BC, Parker, RA, Deason, ME, Qureshi, AA. Wight, JJK. Hypocholesterolemic activity of synthetic and natural tocotrienols. Journal of Medicinal Chemistry 35: 3595-606 (1992) https://doi.org/10.1021/jm00098a002
  31. Decker EA, Rose DJ, Stewart D. Processing of oats and the impact of processing operations on nutrition and health benefits. British J. Nutri. 112: 58-64 (2014) https://doi.org/10.1017/S000711451400227X
  32. Onning G, Akesson B, Oste R, Effects of consumption of oat milk, soya milk, or cow' milk on plasma lipids and antioxidative capacity in healthy subjects. Ann Nutr Metab 42: 211-20 (1998) https://doi.org/10.1159/000012736
  33. Zhang H, Onning G, Triantafyllou AO, Nutritional properties of oatbased beverages as affected by processing and storage. J Sci Food Agric 87: 2294-2301 (2007) https://doi.org/10.1002/jsfa.2987
  34. Kang TS, Jeong HS, Park HJ, Lee MY, Kong YJ, JUng IS. Biological activities of oat soluble ${\beta}$-glucans. Korean J. Food Preserv. 10: 547-553 (2003)
  35. Anttila H, Sontag-Sotrohm S, Salovaara H. Viscosity of beta-glucan in oat products. Agric. Food Sci. 13: 80-87 (2004) https://doi.org/10.2137/1239099041838012
  36. Bhatty, RS. Composition and quality of lentil(Lens culinaris Medik): A review. Can Inst. Food Sci. Technol. J. 21: 144-160 (1988) https://doi.org/10.1016/S0315-5463(88)70770-1
  37. Yadav SS, McNeil DL, Stevenson PC. Lentil An ancient crop for modern times. published by Springer, Dordrecht Netherlands (2007)
  38. Erskine W. The lentils: bonaty, production and uses. CABI (2009)
  39. Thavarajah D, Thavarajah P, Wejesuriya A, Rutzke M, Glahn RP, Combs GF, Vandenberg A. The potential of lentil(Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a 3 year study. Euphytica 180: 123-128 (2011) https://doi.org/10.1007/s10681-011-0365-6
  40. Thavarajah D, Thavarajah P, Sarker A, Vandenberg A. Lentils (Lens culinaris Medikus subspecies culinaris): a whole food for increased iron and zinc intake. J. Agric. Food Chem. 57: 5413-5419 (2009) https://doi.org/10.1021/jf900786e
  41. Han H, Baik BK. Antioxidant activity and phenolic content of lentils(Lens culinaris), chickpea(Cicer arietinum L.), peas(Pisum sativum L.) and soybeans(Glycine max), and their quantitative changes during processing. International J. Food Sci. Tech. 43: 1971-1978 (2008) https://doi.org/10.1111/j.1365-2621.2008.01800.x
  42. Gupta DS, Thavarajah D, Knutson P, Thavarajah P, McGee RJ, Coyne CJ, Kumar S. Lentils (Lens culinaris L.), a Rich Source of Folates. K. Agri. Food Chem. 61: 7794-7799 (2013) https://doi.org/10.1021/jf401891p
  43. Zou Y, Chang S KC, Gu Y, Qian SY. Antioxidant Activity and Phenolic Compositions of Lentil(Lens culinaris var. Morton) Extract and Its Fractions. J. Agri. Food Chem. 59: 2268-2276 (2011) https://doi.org/10.1021/jf104640k
  44. Shepherd J, Codde SM, Ford I, Isles CG, Lorimer AR, McFarlane PW, Mckillop J H, Packhard CJ. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N. Engl. J. Med. 333: 1301-1307 (1995) https://doi.org/10.1056/NEJM199511163332001
  45. Duane WC. Effects of legume consumption on serum cholesterol, biliary lipids, and sterol metabolism in humans. J. Lipid Res. 38: 1120-1128 (1997)
  46. Shams H, Tahbaz F, Entezari MH, Adadi A. Effects of cooked lentils on glycemic control and blood lipid of patients with type 2 diabetes. ARYA Atherosclerosis J. 4: 1-5 (2008)
  47. Ixtaina VY, Nolasco SM, Tomas MC. Physical properties of chia (Salvia ispanica L.) seeds. Industrial crops and product. 28: 286-293 (2008) https://doi.org/10.1016/j.indcrop.2008.03.009
  48. UK Ag. database. Chia. (http://www.uky.edu/Ag/CCD/introsheets/chia.pdf) (2012)
  49. Cahill JP. Ethnobotany of chia, Salvia hispanica L. (Lamiaceae). Economic Botany, 57: 604-618 (2003) https://doi.org/10.1663/0013-0001(2003)057[0604:EOCSHL]2.0.CO;2
  50. ACNFP. Application for the authorizing of chia seed from Salvia hispanica L. for consumption as a food and as an ingredient in additional food groups. (http://acnfp.food.gov.uk/sites/default/files/mnt/drupal_data/sources/files/multimedia/pdfs/applicdosschiacompany.pdf)
  51. Reyes E, Tecabte A, Valdivia-Lopez MA. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 107: 656-663 (2008) https://doi.org/10.1016/j.foodchem.2007.08.062
  52. Chicco AG, D'Alessandro ME, Hein GJ, Oliva ME, Lombardo YB. Dietary chia seed (Salvia hispanica L.) rich in a-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. British J. Nutri. 101: 41-50 (2009) https://doi.org/10.1017/S000711450899053X
  53. Jeong SW, Kim JY, Paek JE, Kim JH, Kwak KS, Kwon OR. Systematic review of the effect of omega-3 fatty acids on improvement of blood flow while focused on evaluation of claims for health functional food. J. Nutr. Health. 2013: 226-238 (2013)
  54. Choe EO. Functional lipids and application of ometa-3 fatty acids to conventional foods. 4: 1-13 (2010)
  55. Munoz LA, Cobos A, Diaz O, Aguilera. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Engineering 108: 216-224 (2012) https://doi.org/10.1016/j.jfoodeng.2011.06.037
  56. Reyes-Caudillo E, Tecante A, Valdivia-Lopez MA, Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry 107: 656-663 (2008) https://doi.org/10.1016/j.foodchem.2007.08.062