DOI QR코드

DOI QR Code

Preparation of Soft Etchant to Improve Adhesion Strength between Photoresist and Copper Layer in Copper Clad Laminates

CCL 표면과 포토리지스트와의 접착력 향상 위한 Soft 에칭액의 제조

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Moon, Sung-Jin (Department of Chemical Engineering, Changwon National University)
  • 이수 (창원대학교 화공시스템공학과) ;
  • 문성진 (창원대학교 화공시스템공학과)
  • Received : 2015.08.10
  • Accepted : 2015.09.30
  • Published : 2015.09.30

Abstract

In this research, environmental friendly organic acid containing microetching system to improve adhesion strength between photoresist resin and Copper Clad Laminate(CCL) was developed without using strong oxidant $H_2O_2$. Etching rate and surface contamination on CCL were examined with various etching conditions with different etchants, organic acids and additives. to develope an optimum microetching condition. Etching solution with 0.04 M acetic acid showed the highest etching rate $0.4{\mu}m/min$. Etching solution with the higher concentration of APS showed the higher etching rate but surface contamination on CCL is very serious. In addition, stabilizer solution also played an important role to control the surface contamination. As a result of research, the etching solution containing 0.04 M of acetic acid, 0.1 M of APS with 4 g/L of stabilizer solution(ST-1) was best to improve adhesion between CCL and photoresist resin as well as showed the most clean and rough surface with the etching rate of $0.37{\mu}m/min$.

PCB 제조에서 photoresist와 Copper Clad Laminate(CCL)의 구리표면과의 부착력을 항상시키기 위하여 사용되는 soft etching제를 제조하기 위하여 과산화수소 사용을 배제하고, 유기산과 유기과산화물을 이용하여 산의 종류, 농도, 에칭시간 등에 따른 구리표면의 에칭속도, 표면 조도, 및 오염도 등을 조사하였다. 또한 에칭 후의 표면의 얼룩을 제거하기 위한 안정제의 최적 배합 및 농도도 확립하였다. 본 연구 결과 유기산의 종류 중에서는 아세트산이 초기 구리 에칭속도가 가장 빨랐으며, 농도가 0.04 M이었을 때 $0.4{\mu}m/min$이였다. 유기과산화물인 APS의 농도는 높을수록 에칭속도가 가장 빨랐으나, 표면 오염이 심각하였다. 안정제 용액의 조성도 표면 오염도에 큰 영향을 주었다. 결과적 0.04 M 아세트산, 0.1M APS에 4 g/L의 안정제(ST-1)를 첨가한 에칭액의 경우 $0.37{\mu}m/min$의 에칭속도와 표면오염이 전혀 없으며, 표면 조도도 가장 우수하였다. 즉, CCL과 photoresist와 접착력을 향상시킬 수 있을 것으로 판단된다.

Keywords

References

  1. T. Sutter, Inkjet-Based Micromanufacturing; Inkjet Fabrication of Printed Circuit Boards, eds J. G. Korvink, P. J. Smith, and D.-Y. Shin, Wiley-VCH Verlag GmbH & Co. Weinheim, Germany. Chap. 16, (2012).
  2. Y. J. Park, and G. B. Lee, "Analysis of Energy Efficiency and Productivity in Dry Process in PCB Manufacturing, Inter. J. Precision Eng. Manuf., 14(7), 1213-1221 (2013). https://doi.org/10.1007/s12541-013-0165-0
  3. D. Tews, F. Michalik, R. Haidar, M. Thoms, M. Goh, and S. Li, Non-Etching Adhesion Promoter for Dry Film for Semi-additive Manufacturing-Advanced Dry Film Pre-treatment, 2013 8th International IMPACT Conference, IEEE Catalog Number: CFP1359B-ART (2013).
  4. Z. Sheng, M. H. Azarian, and M. G. Pecht, Surface Insulation Resistance of Conformally Coated Printed Circuit Boards Processed With No-Clean Flux, IEEE Transactions on Electronics Packaging Manufacturing, 29(3), 217-223 (2006). https://doi.org/10.1109/TEPM.2006.882496
  5. Mitsubishi Gas Chemical Co., Kor. Pat. Pub. No. 10-2014-0044908 (2014).
  6. Atotech Deutschland Gmbh, Method for providing organic resist adhesion to a copper or copper alloy surface, U. S. Pat. 20140141169 A1 (2014).
  7. Atotech Deutschland Gmbh, Acidic treatment liquid and method of treating copper surfaces, U. S. Pat. 7,153,449 B2 (2006).
  8. Y. -J. Kang, M. -E. Hong, and D.-H. Kim, Study on Soft Etching Material Development to Improve Peel Strength between Surface of Copper and Solder Resist Ink, J. Korean Ind. Eng. Chem., 20(2), 172-176 (2009).
  9. J. Ou, W. Hu, S. Liu, M. Xue, F. Wang, and W. Li, Superoleophobic Textured Copper Surfaces Fabricated by Chemical Etching/Oxidation and Surface Fluorination, ACS Appl. Mater. Interfaces, 5, 10035-10041 (2013). https://doi.org/10.1021/am402531m
  10. J. Hernandez, P. Wrschk and G. S. Oehrlein, Surface Chemistry Studies of Copper Chemical Mechanical Planarization, J. Electrochem. Soc., 148(7), G389-G397 (2001). https://doi.org/10.1149/1.1377595
  11. Toyama Nippon Denki KK, Surface Treating Agent for Copper and Copper Alloy, Japan Patent 02-236289,A (1990).
  12. Pennwalt Cor., Etching of copper and copper bearing alloys, US 4,859,281 A (1987).
  13. IBM Corporation, Copper cleaning compositions, processes and products derived therefrom, U. S. Pat. 6830627 B1 (2004).
  14. MacDermid Inc., Microetchant for copper surfaces and processes for using same, U. S. Patent 5,328,561 (1994).
  15. W. Zhou, R. Song, L-L. Jiang, W-P. Xu, G-K. Liang, D-C. Cheng, and L-J. Liu, Chemical etching process of copper electrode for bioelectrical impedance technology, Trans. Nonferrous Met. Soc. China, 22, 1501-1506 (2012). https://doi.org/10.1016/S1003-6326(11)61347-2
  16. Atotech Deutschland Gmbh. Solution for etching copper surfaces and method of depositing metal on copper surfaces, WO 2004085706 A1 (2004).
  17. T. Horiuchi, H. Ishii, Fabrication of precise copper micro-coils using electrolytic etching, Microelectronic Engineering, 97, 212-215 (2012). https://doi.org/10.1016/j.mee.2012.03.019