DOI QR코드

DOI QR Code

베인 레오미터를 이용한 왁스오일의 특성 연구

Characteristic evaluation of waxy oil behavior using vane rheometer

  • 오경석 (인하공업전문대학 화공환경과)
  • Oh, Kyeong-Seok (Department of Chemical and Environmental Technology, Inha Technical College)
  • 투고 : 2015.08.07
  • 심사 : 2015.09.26
  • 발행 : 2015.09.30

초록

심해유전개발 중 원유의 흐름보증과 관련하여 하이드레이츠, 아스팔텐, 무기물 침전 등이 주된 관심분야가 될 수 있으며, 특히 왁스에 대해서도 그 특성을 이해하는 것이 중요하다. 원유흐름 중단으로 인한 왁스가 젤을 형성하였을 경우에는, 원유의 흐름을 재시작하기 위해서는 높은 압력의 펌프를 가동해야 하는 어려움이 있다. 본 연구에서는 베인 레오미터를 사용하여 왁스 젤의 항복응력 측정을 통한 왁스 젤의 강도를 측정하고 예측하였다. 또한, 왁스 젤의 강도측정을 통해서 정성적, 정량적인 예측을 시도하였다.

Apart from hydrates, asphaltenes, and inorganic minerals, paraffinic waxes are also very important in flow assurance area. Evaluation of wax gel behavior has been important as off-shore oil recovery becomes more popular in oil production. Restart after either planned or emergency shutdown requires pump operation in high pressure since a waxy oil forms troublesome gel. In this paper, vane method is introduced to determine wax gel strength by determining yield stress. Prediction of gel strength are discussed in qualitative and quantitative manners.

키워드

참고문헌

  1. K. Oh, M. D. Deo, Characteristics of Wax Gel Formation in the Presence of Asphaltenes, Energy Fuels, 23(3), 1289 (2009). https://doi.org/10.1021/ef8006307
  2. H. P. Ronningsen, B. Bjorndal, A. B. Hansen, W. B. Pedersen, Wax Precipitation from North Sea Crude Oils. 1. Crystallization and Dissolution Temperatures and Newtonian and Non-Newtonian Flow Properties, Energy Fuels, 5(6), 895 (1991). https://doi.org/10.1021/ef00030a019
  3. http://www.alaskacenters.gov/the-alyeska-pipeline.cfm (accessed on Sep. 14th, 2015)
  4. R. M. Roehner, N. Dahdah, J. Fletcher, F. Hanson, Comparative Compositional Study of Crude Oil Solids from the Trans Alaska Pipeline System Using High Temperature Gas Chromatography, Energy Fuels, 16, 211 (2002). https://doi.org/10.1021/ef010218m
  5. H.P. Ronningsen, Production of Waxy Oils on the Norwegian Continental Shelf: Experience, Challenges, and Practices, Energy Fuels, 26, 4126 (2012).
  6. http://dec.alaska.gov/spar/ppr/response/sum_fy11/110108301/factsheets/fact_Pigging.pdf (accessed on Sep. 14th, 2015)
  7. A. Uhde, G. Kopp, Pipeline Problems Resulting from the Handling of Waxy Crudes, J. Inst. Pet., 57, 63 (1971)
  8. T. C. Davenport, R. S. H. Somper, The Yield Value and Breakdown of Crude Oil Gels, J. Inst. Pet., 57, 86 (1971)
  9. T. S. Golczynski, E.C. Kempton, Understanding Wax Problems Leads to Deepwater Flow Assurance Solutions, World oil, 227, D7 (2006).
  10. Annual Book of ASTM-Standards, Petroleum Products, Lubricants, West Conshohocken, Pa.: American Society for Testing and Materials, Sec. 5. (1999).
  11. Coutinho, J.A.P. and Ruffier-Meray, V. "Experimental Measurements and Thermodynamic Modeling of Paraffinic Wax Formation in Undercooled Solutions," Ind. Eng. Chem. Res., 36, 4977 (1997). https://doi.org/10.1021/ie960817u
  12. K. Oh, Prediction of Precipitated Wax Amounts using FTIR Spectroscopy, Korean Chem. Eng. Res., 51(3), 376 (2013) https://doi.org/10.9713/kcer.2013.51.3.376
  13. Roehner, R. M. and Hanson, F. V. "Determination of Wax Precipitation Temperature and Amount of Precipitated Solid Wax versus Temperature for Crude Oils Using FT-IR Spectroscopy," Energy Fuels, 15(3), 756 (2001). https://doi.org/10.1021/ef010016q
  14. K. Ferworn, A. Hammami, H. Ellis, Control of Wax Deposition: An Experimental Investigation of Crystal Morphology and An Evaluation of Various Chemical Solvents, SPE37240. In: SPE International Symposium on Oilfield Chemistry, Houston, TX, February (1997).
  15. P. Singh, H.S. Fogler, N. Nagarajan, Prediction of the Wax Content of the Incipient Wax-Oil Gel in Pipeline: An Application of the Controlled-Stress Rheometer, J. Rheol., 43, 1437 (1999). https://doi.org/10.1122/1.551054
  16. K. Oh, M. Jemmett, M. D. Deo, Yield Behavior of Gelled Waxy Oil: Effect of Stress Application in Creep Ranges, Ind. Eng. Chem. Res., 48, 8950 (2009). https://doi.org/10.1021/ie9000597
  17. K. Oh, M. D. Deo, Yield Behavior of Gelled Waxy Oil in Water-in-Oil (w/o) Emulsion at Temperatures below Ice Formation, Fuel, 90, 2113 (2011). https://doi.org/10.1016/j.fuel.2011.02.030
  18. K. Oh, K. Gandhi, J. Magda, M. D. Deo, Yield Stress of Wax Gel using Vane Method, Pet. Sci. Technol., 27, 2063 (2009). https://doi.org/10.1080/10916460802686475
  19. Q. D. Nguyen, D. V. Boger, Yield Stress Measurement for Concentrated Suspensions, J. Rheol., 27, 321 (1983). https://doi.org/10.1122/1.549709
  20. Q. D. Nguyen, D. V. Boger, Direct Yield Stress Measurement with the Vane Method, J. Rheol., 29, 335 (1985). https://doi.org/10.1122/1.549794

피인용 문헌

  1. 모델오일을 이용한 파라핀 왁스의 침전 연구 vol.34, pp.3, 2015, https://doi.org/10.12925/jkocs.2017.34.3.495