DOI QR코드

DOI QR Code

Visible light-induced reduction of Cr(VI) in cationic micelle solution

  • Kyung, Hyunsook (School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Cho, Young-Jin (School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Choi, Wonyong (School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH))
  • Received : 2015.09.12
  • Accepted : 2015.09.20
  • Published : 2015.09.30

Abstract

Cr(VI) reduction was successfully achieved in the presence of cationic micelles (CMs) under visible light illumination. Micelle formation of cationic surfactants seems to be critical in Cr(VI) reduction. Cr(VI) was reduced very fast above the critical micelle concentration (cmc) of CTAB solutions, but was not reduced at all either below or around the cmc of CTAB. The reduction rate of Cr(VI) was enhanced in the absence of dissolved oxygen, supporting that the removal of Cr(VI) should be achieved via a reductive pathway. When CTAB was substituted by Brij 35 or SDS, the reduction of Cr(VI) was negligible. This indicates that the electrostatic interaction between Cr(VI) and headgroups of surfactants is important in the visible light-induced Cr(VI) reduction in micellar solutions.

Keywords

References

  1. Costa, M. Toxicol. Appl. Pharmacol. 2003, 188, 1. https://doi.org/10.1016/S0041-008X(03)00011-5
  2. Lin, W. Y.; Wei, C.; Rajeshwar, K. J. Electrochem. Soc. 1993, 140, 2477. https://doi.org/10.1149/1.2220847
  3. Ku, Y.; Jung, I.-L. Wat. Res. 2001, 35, 135. https://doi.org/10.1016/S0043-1354(00)00098-1
  4. Mandal, U.; Ghosh, S.; Dey, S.; Adhikari, A.; Bhattacharyya, K. J. Chem. Phys. 2008, 128, 164505. https://doi.org/10.1063/1.2888553
  5. Ding, H.; Yu, H.; Dong, Y.; Tian, R.; Huang, G.; Boothman, D. A.; Sumer, B. D.; Gao, J. J. Control. Release 2011, 156, 276. https://doi.org/10.1016/j.jconrel.2011.08.019
  6. Kopec, M.; Niemiec, W.; Laschewsky, A.; Nowakowska, M.; Zapotoczny, S. J. Phys. Chem. C 2014, 118, 2215. https://doi.org/10.1021/jp410808z
  7. Tavernier, H. L.; Laine, F.; Fayer, M. D. J. Phys. Chem. A 2001, 105, 8944.
  8. Alkaitis, S. A.; Beck, G.; Graetzel, M. J. Am. Chem. Soc. 1975, 97, 5723. https://doi.org/10.1021/ja00853a015
  9. Hackett, J. W.; Turro, C. J. Phys. Chem. A 1998, 102, 5728. https://doi.org/10.1021/jp9814451
  10. Cho, Y.; Kyung, H.; Choi, W. Appl. Catal. B: Environ. 2004, 52, 23 https://doi.org/10.1016/j.apcatb.2004.03.013
  11. Cho, Y.; Park. H.; Choi, W. J. Photochem. Photobiol. A: Chem. 2004, 165, 43 https://doi.org/10.1016/j.jphotochem.2004.02.019
  12. Long, J. A.; Rankin, B. M.; Ben-Amotz, D. J. Am. Chem. Soc. 2015, 137, 10809. https://doi.org/10.1021/jacs.5b06655
  13. Shi, Z.; Sigman, M. E.; Ghosh, M. M.; Dabestani, R. Environ. Sci. Technol. 1997, 31, 3581. https://doi.org/10.1021/es9703279
  14. Buwalda, R. T.; Jonker, J. M.; Engberts, J. B. F. N. Langmuir 1999, 15, 1083. https://doi.org/10.1021/la980824i
  15. Cang, H.; Brace, D. D.; Fayer, M. D. J. Phys. Chem. B 2001, 105, 10007. https://doi.org/10.1021/jp0113127
  16. Turro, N. J.; Gratzel, M.; Braun, A. M. Angew. Chem. Int. Ed. 1980, 19, 675 https://doi.org/10.1002/anie.198006751
  17. Munoz, J.; Domenech, X. J Appl Electrochem 1990, 20, 518. https://doi.org/10.1007/BF01076066
  18. Gimenez, J.; Aguado, M. A.; Cervera-March, S. J. Mol. Catal. A: Chem. 1996, 105, 67. https://doi.org/10.1016/1381-1169(95)00148-4