DOI QR코드

DOI QR Code

H/D substitution makes difference in photochemical studies: the case of dimethylamine

  • 투고 : 2015.09.22
  • 심사 : 2015.09.25
  • 발행 : 2015.09.30

초록

When the molecule in the excited state is subject to prompt predissociation, it is quite nontrivial to obtain vibrational structure of the excited state in general. This applies to the case of photochemistry of dimethylamine (DMA:$(CH_3)_2NH$). When DMA is excited to its first electronically excited state ($S_1$), the N-H bond dissociation occurs promptly. Therefore, $S_1$ vibronic bands are homogeneously broadened to give extremely small ionization cross sections and heavily-congested spectral features, making infeasible any reasonable spectral assignment. Here, we demonstrate that the predissociation rate of the excited state could be significantly reduced by the NH/ND substitution to give the much better-resolved $S_1$ spectral feature, revealing the vibrational structure of the excited state of $DMA-d_1$ ($(CH_3)_2ND$) for the first time.

키워드

참고문헌

  1. E. Tannenbaum, E. M. Corrin, and A. J. Harrison, J. Chem. Phys. 1953, 21, 311-318. https://doi.org/10.1063/1.1698878
  2. D. P. Taylor and E. R. Bernstein, J. Chem. Phys. 1995, 103, 10453-10464. https://doi.org/10.1063/1.469895
  3. D. P. Taylor, C. F. Dion, and E. R. Bernstein, J. Chem. Phys. 1997, 106, 3512-3518. https://doi.org/10.1063/1.473448
  4. S. J. Baek, K. -W. Choi, Y. S. Choi, and S. K. Kim, J. Chem. Phys. 2003, 118, 11026-11039. https://doi.org/10.1063/1.1575734
  5. M. H. Park, K. W. Choi, S. Choi, S. K. Kim, and Y. S. Choi, J. Chem. Phys. 2006, 125, 084311. https://doi.org/10.1063/1.2338322
  6. D. S. Ahn, J. Lee, J.-M. Choi, K.-S. Lee, S. J. Baek, K. Lee, K.-K. Baeck and S. K. Kim, J. Chem. Phys. 2008, 128, 224305. https://doi.org/10.1063/1.2937451
  7. D. S. Ahn, J. Lee, Y. C. Park, Y. S. Lee and S. K. Kim, J. Chem. Phys. 2012, 136, 024306. https://doi.org/10.1063/1.3675566
  8. A. Golan, S. Rosenwaks and I. Bar, J. Chem. Phys. 2006, 125, 151103. https://doi.org/10.1063/1.2362816
  9. R. Marom, U. Zecharia, S. Rosenwaks and I. Bar, J. Chem. Phys. 2008, 128, 154319. https://doi.org/10.1063/1.2907738
  10. R. Marom, C. Levi, T. Weiss, S. Rosenwaks, Y. Zeiri, R. Kosloff and I. Bar, J. Phys. Chem. A. 2010, 114, 9623-9627. https://doi.org/10.1021/jp912107h
  11. J. O. Thomas, K. E. Lower and C. Murray, J. Phys. Chem. A. 2014, 118, 9844-9852.
  12. M. Epshtein, A. Portnov and I. Bar, Phys. Chem. Chem. Phys. 2015, 17, 19607-19615 https://doi.org/10.1039/C5CP01193K
  13. J. Wei, L. Fang, B. Zhang, W. -Y. Guo, L. -D. Zhang, S. -D. Zhang, and J. -Y. Cai, Chin. Phys. Soc. 1997, 6, 725-730.
  14. W. Li, S. D. Chambreau, S. A. Lahankar, A. G. Suits, Rev. Sci. Instrum. 2005, 76, 063106. https://doi.org/10.1063/1.1921671
  15. V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, H. Reisler, Rev. Sci. Instrum. 2002, 73, 2634. https://doi.org/10.1063/1.1482156
  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
  17. I. Pugliesi, K. Muller-Dethlefs, J. Phys. Chem. A. 2006, 110, 4657-4667.
  18. All Franck-Condon simulations have been carried out using FCLabII Version 2009a, a computational package developed by C. Schriever, M.C.R. Cockett and I. Pugliesi. The latest information on program updates, a basic introduction to Franck-Condon simulations and a free download of the software can be found at http://www.fclab2.net/.