DOI QR코드

DOI QR Code

연소 시험에서 발생하는 일산화탄소와 이산화탄소의 발생

Production of Carbon Monoxide and Carbon Dioxide Gases in the Combustion Tests

  • 정영진 (강원대학교 소방방재공학과, 강원대학교 소방방재연구센터)
  • Chung, Yeong-Jin (Dept. of Fire Protection Engineering, Kangwon National University, Fire & Disaster Prevention Research Center, Kangwon National University)
  • 투고 : 2015.07.24
  • 심사 : 2015.10.12
  • 발행 : 2015.10.31

초록

본 연구에서는 메틸렌피페라지노메틸-비스-포스폰산 금속염($PIPEABPM^{n+}$)과 메틸렌피페라지노메틸-비스-포스폰산(PIPEABP)으로 처리된 리기다 소나무의 연소독성가스의 생성을 시험하였다. 15 wt%의 메틸렌피페라지노메틸-비스-포스폰산 금속염과 메틸렌피페라지노메틸-비스-포스폰산 수용액으로 각각 리기다 소나무에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 연소독성가스의 생성을 시험하였다. 그 결과, 메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리한 시험편은 메틸렌피페라지노메틸-비스-포스폰산 철염($PIPEABPFe^{2+}$)으로 처리한 시험편을 제외하고, 메틸렌피페라지노메틸-비스-포스폰산을 처리한 시험편과 비교하여 최대일산화탄소의 생성($CO_{peak}$ production)이 (0.0136~0.0178% at 532~678 s)으로 낮게 나타났다. 그리고 금속염으로 처리한 시험편($PIPEABPM^{n+}$)은 금속염으로 처리하지 않은 시험편(PIPEABP)보다 낮은 최대이산화탄소의 생성($CO_{2\;peak}$ production)이 (0.0537~0.0628% at 532~678 s)임을 보였다. $O_2$의 생성농도는 사람에게 치명적일 수 있는 수준인 15%보다는 훨씬 높으므로 그로 인한 위험성은 배제할 수 있었다. 따라서 메틸렌피페라지노메틸-비스-포스폰산 금속염으로 처리한 시험편은 처리 하지 않은 시험편과 비교하여 연소-유독성을 부분적으로 감소시켰다.

This study was performed to test the production of combustion toxic gases by Pinus rigida specimens treated with various types of methylpiperazinomethyl-bis-phosphonic acid $M^{n+}$ ($PIPEABPM^{n+}$) and methylpiperazinomethyl-bis-phosphonic acid (PIPEABP). Three coats of 15 wt% $PIPEABPM^{n+}$ and PIPEABP solutions were applied to plates of Pinus rigida at room temperature. After drying the treated specimens, the production of combustion toxic gases was examined using a cone calorimeter (ISO 5660-1). The specimens treated with $PIPEABPM^{n+}$ showed lower carbon monoxide production ($CO_{2\;peak}$; 0.0136~0.0178% at 532~678 s) than the PIPEABP plates, except for the specimen treated with $PIPEABPFe^{3+}$. In addition, the peak carbon dioxide production ($CO_{2\;peak}$) was lower (0.03648~0.3648% at 373~433 s) than that of the PIPEABP-treated plate. Notably, oxygen production was much higher than 15%, which can be fatal to humans. Therefore, the resulting risk could be eliminated. The results indicate that the combustion toxicities were partially decreased due to treatment of the virgin plate with $PIPEABPM^{n+}$.

키워드

참고문헌

  1. R. H. White and M. A. Dietenberger, "Wood Handbook: Wood as an Engineering Material", Ch. 17: Fire Safety (1999).
  2. A. Ernst and J. D. Zibrak, "Carbon Monoxide Poisoning", N. Engl. J. Med., Vol. 339, No. 22, pp. 1603-1608 (1998). https://doi.org/10.1056/NEJM199811263392206
  3. S. R. Thom, "Carbon Monoxide Pathophysiology and Treatment", Physiology and Medicine of Hyperbaric Oxygen Therapy, Saunders Elsevier, Philadelphia, pp. 321-347 (2008).
  4. C. L. Beyler, "SFPE Handbook of Fire Protection Engineering", Section2, National Fire Protection Association, Quincy, Massachusetts, pp. 114-115 (2008).
  5. "Toxicology Update", Journal of Applied Toxicology, Vol. 19, No. 5, pp. 379-386 (1999). https://doi.org/10.1002/(SICI)1099-1263(199909/10)19:5<379::AID-JAT563>3.0.CO;2-8
  6. R. D. Stewart, J. E. Peterson, E. D. Baretta, H. C. Dodd and A. A. Herrmann, "Experimental Human Exposure to High Concentrations of Carbon Monoxide", Archives of Environmental Health, Vol. 26, No. 1, pp. 1-7 (1973). https://doi.org/10.1080/00039896.1973.10666210
  7. D. A. Purser, "A Bioassay Model Fortesting the Incapacitating Effects of Exposure to Combustion Product Atmospheres Using Cynomolgus Monkeys", Journal of Fire Sciences, Vol. 2, No. 1, pp. 20-26 (1984). https://doi.org/10.1177/073490418400200104
  8. B. G. King, "High Concentration-short Time Exposures and Toxicity", Journal of Industrial Hygiene and Toxicology, Vol. 31, No. 6, pp. 365-375 (1949).
  9. U. C. Luft, "Aviation Physiology: the Effects of Altitude in Handbook of Physiology", American Physiology Society. Washington, DC, pp. 1099-1145 (1965).
  10. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", Eds. S. J. Grayson and D. A. Smith, Elsevier Appied Science Publisher, London, UK. (1986).
  11. M. M. Hirschler, "Thermal Decomposition and Chemical Composition", 239, ACS Symposium Series 797 (2001).
  12. Y. J. Chung and E. Jin, "Synthesis of Alkylenediaminoalkyl-Bis-Phosphonic Acid Derivatives", J. of Korean Oil Chemist's Soc., Vol. 30, No. 1, pp. 1-8 (2013). https://doi.org/10.12925/jkocs.2013.30.1.001
  13. M. H. Park and Y. J. Chung, "Combustive Properties of Pinus Risids Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid ($M^{2+}$)", Fire Sci. Eng. Vol. 28, No. 6, pp. 28-34 (2014). https://doi.org/10.7731/KIFSE.2014.28.6.028
  14. E. Jin and Y. J. Chung, "Combustion Characteristics of Pinus rigida Plates Painted with Alkylenediaminoalkyl-Bis-Phosphonic Acid ($M^{2+}$)", Fire Sci. Eng., Vol. 27, No. 6, pp. 70-76 (2013). https://doi.org/10.7731/KIFSE.2013.27.6.070
  15. J. C. Kotz, P. M. Treichel and G. C. Weaver, "Electron Transfer Reactions, Chemistry & Chemical Reactivity", Sixth Ed., Thomson Learning, Inc., Toronto, Canada (2006).
  16. E. Jin and Y. J. Chung, "Combustion Characteristics of Wood Specimens Treated with Methylenepiperazinomethyl-Bis-Phosphonic Acid ($M^{n+}$)s", Fire Sci. Eng., Vol. 28, No. 3, pp. 55-61 (2014). https://doi.org/10.7731/KIFSE.2014.28.3.055
  17. Y. J. Chung, "Combustive Properties of Specimens Treated with Methylenepiperazinomethyl-Bis-Phosphonic Acid ($M^{n+}$)s", Appl. Chem. Eng., Vol. 26, No. 4, in press (2015).
  18. ISO 5660-1, "Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method)", Genever (2002).
  19. V. Babrauskas, "The SFPE Handbook of Fire Protection Engineering", Fourth Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  20. J. G. Quintire, "Principles of Fire Behavior", Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
  21. G. Kimmerle, "Aspects and Methodology for the Evaluation of Toxicological Parameters During Fire Exposure", Journal of Combustion Toxicology, Vol. 1 (1973).
  22. A. P. Mourituz, Z. Mathys and A. G. Gibson, "Heat Release of Polymer Composites in Fire", Composites: Part A, Vol. 38, No. 7, pp. 1040-1054 (2005).
  23. M. M. Hirscher, "Reduction of Smoke Formation from and Flammability of Thermoplastic Polymers by Metal Oxides", Polymer, Vol. 25, (March), pp. 405-411 (1984). https://doi.org/10.1016/0032-3861(84)90296-9
  24. J. Zhang, D. D. Jiang and C. A. Wilkie, "Thermal and Flame Properties of Polyethylene and Polypropylene Nanocomposites Based on an Oligomerically-modified Clay", Polm. Degrad. Stab., Vol. 91, pp. 298-304 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.05.006
  25. Y. J. Chung, H. M. Lim, E. Jin and J. K. Oh, "Combustion-retardation Properties of Low Density Polyethylene and Etylene Vinyl Acetate Mixtures with Magnesium Hydroxide", Appl. Chem. Eng., Vol. 22, pp. 439-443 (2011).
  26. OHSA, "Carbon Monoxide", OSHA Fact Sheet, United States National Institute for Occupational Safety and Health, September 14 (2009).
  27. M. J. Spearpoint and G. J. Quintiere, "Predicting the Burning of Wood Using an Integral Model", Combustion and Flame, Vol. 123, pp. 308-325 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  28. OHSA, "Carbon Dioxide", Toxicological Review of Selected Chemicals, Final Rule on Air Comments Project, OHSA's Comments, Jannuary 19 (1989).
  29. MSHA, "Carbon Monoxide", MSHA's Occupational Illness and Injury Prevention Program Topic, U.S. Department of Labor (2015).