• Title/Summary/Keyword: ISO 5660-1

Search Result 109, Processing Time 0.034 seconds

Analysis on the Reaction-to-fire's Performance of Sandwich Panel Systems by using ISO 5660-1 and EN 13823 Fire Tests (중소형 화재시험(ISO 5660-1 및 EN 13823)을 이용한 샌드위치패널 연소성능 분석)

  • Park, Kye-Won;Im, Hong-Soon;Jeong, Jae-Gun;Kim, Woon-Hyung
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • In this study, the combustion properties, which are called the reaction-to-fire's performance, of sandwich panels were tested and analyzed according to both ISO 5660 (cone calorimeter method) and EN 13823 (SBI). Several variables including ignition time, mass loss, heat release rate, smoke production rate and $O_2$ density about four sandwich panels and four core materials (thermal insulation material) were evaluated. Combustion properties' similarity and difference of sandwich panels and core materials were compared by materials and test methods respectively. Finally test results were evaluated by Japanese standard building code, National Building code of Canada and EN 13501-1 as well.

The Experimental Study for the Combustion-Property of Sandwich Panels using ISO 5660 Cone Calorimeter (콘칼로리미터를 사용한 샌드위치패널 연소특성에 대한 실험적 연구)

  • Park, Soo-Young;Kim, Dae-Hoi;Im, Hong-Soon
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.33-41
    • /
    • 2006
  • Nowadays in Korea, KS F 2271(Testing method for incombustibility of internal finish material and element of buildings) has been using for the evaluation of fire safety performance of sandwich panels. The test method in Japan and in Korea was based on the same way. When the Japanese standard building code was revised in 2000, the test method in the ISO 5660-1 was adopted for the test method for combustion performance of internal finishing materials and elements of buildings. According to this, the revision version of draft substituting the test method in the KS F 2271 for one in the ISO 5660-1(Cone Calorimeter method) is informed in Korea. In this study, combustion properties of sandwich panels were tested using the cone calorimeter method. Ignition time, peak heat release rate and total heat released of four sandwich panels and four core materials (thermal insulation material), which are widely used in Korea, were tested. Test results were analyzed for each specimen. Finally, test results were classified by Japanese standard building code and Canadian NBC revised.

An Experimental Study on Smoke Generation of Rubber Floor for Railway Vehicle (철도차량용 고무바닥재의 연기발생에 관한 실험적 연구)

  • Park, Young Ju
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.15-20
    • /
    • 2018
  • In this study, we have performed the Cone Calorimeter test and Smoke density test in accordance with ISO 5660-1 and ASTM E662 respectively to check the smoke production characteristics of rubber flooring materials for railway vehicle. Early in the ASTM E662 test, more smoke was produced in the flame mode test than non-flame mode test, but later more smoke was produced in non-flame mode test. The correlation($R^2$) between TSR(Total Smoke Release) by ISO 5660-1 and Ds(Specific Optical Density) by ASTM E662 Flame mode was 0.782. The $R^2$ between TSR by ISO 5660-1 and Ds by ASTM E662 Non-flame was 0.930.

Applying to simulation analysis for predicting the combustion performance of Large scale fire tests (실대화재시험의 연소성능 예측을 위한 시뮬레이션 적용)

  • Kim, Woon-Hyung;Park, Kye-Won;Jeong, Jae-Gun;Im, Hong-Soon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.86-92
    • /
    • 2008
  • On this study, modeling works using Cone tools simulation method were made for the prediction of real fire test results such as small to large scale fire tests including ISO 5660-1, EN 13823 and ISO 13784-1. For those simulation prediction, three real fire tests were performed in advance. In addition, Real data from ISO 5660-1 test were applied to this simulation modeling. Finally, the comparative analysis between Real fire tests and Simulation results were made out. Also, the Classifying evaluation by EURO Class using EN 13501-1 were taken off.

  • PDF

A Study on Fire Spread and Evacuation Risk of Conduit Combustion in Ceiling Hiding Place (천장 은폐장소 전선관 연소에 따른 화재확산 및 피난 위험도에 관한 연구)

  • Park, Kwang-Muk;Jeon, Jae-Kam;Bang, Sun-Bae
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • In this study, the ISO 5660 and ISO 5659 combustion tests were conducted with synthetic resin conduits (CD, VE) and metal conduit (ST) used for wiring work in electrical facilities, which can be installed in ceiling concealed places. Then, fire spreading and evacuation risks were analyzed based on the measured data. In the ISO 5660 test, CD of 120.5 MJ/㎡, VE of 81.9 MJ/㎡, and ST of 4.9 MJ/㎡ were measured. In the ISO 5659 test, the CD 1320, VE 731, and ST 102 were measured, and then the maximum smoke densities were measured for CD 605 s, VE 740 s, and ST 1,200 s. In terms of fire spreading and evacuation risk, the CD conduit, VE conduit, and ST conduit were in order. In the fire spreading risk analysis, total heat emission was calculated as 4,820 MJ/㎡, 4,267 MJ/㎡, and 196 MJ/㎡ for CD, VE, and ST, respectively. Evacuation risk analysis shows at transmittance of 89%, CD is 127 s, VE is 35 s, and ST is 969 s. At transmittance of 79%, representing almost invisible concentration, CD is 157 s and VE is 50 s. The CD and VE conduits had a high fire spreading and evacuation risks, while the ST conduit had little effect on fire spreading and evacuation risk.

Flammable Evaluation of Plastics for Living by Cone Calorimeter Test (콘칼로리미터 시험법에 의한 생활용 플라스틱의 가연성 평가)

  • You, Jisun;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • It was conceived from the realization that there was a lack of studies on the fire risk compared to utility and importance of plastic which is widely used. In this study, the fire hazard of five types of plastic products was measured by Cone Calorimeter (ISO 5660-1). As a result, the time to ignition (TTI) of polyvinyl Chloride (PVC) plate delayed TTI (196 s), and polystyrene (PS) plate had the shortest TTI of 19 s. The total heat release (THR) of PS plate was measured at 213.07 % higher than the lowest measured PVC plate. Also, the PS plate will have 1.45 to 4.21 times higher $CO_2$ than other plastics, resulting in the highest incomplete combustion and the greatest possible damage of life. Thus, assessing the risk of fire revealed that PS plate is the most dangerous and PVC is the safest.

Combustive Properties of Ethylene-Propylene Die Monomer/Polypropylene/Clay Nanocomposites (에틸렌-프로필렌 디엔 단량체/폴리프로필렌/클레이 나노복합체의 연소성)

  • Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.190-195
    • /
    • 2011
  • Effects of ethylene-propylene diene monomer (EPDM)/polypropylene (PP), zinc oxide, stearic acid, and clay on the combustive properties based on EPDM/PP were investigated. The EPDM/PP/clay nanocomposites was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). It was found that the combustive properties in the nanocomposites decreased due to the fire resistance compared with unfilld EDPM/PP. The nanocomposites showed the lower peak heat release rate (PHRR) than that of virgin EPDM/PP, while stearic acid for softening ruber increased the mean heat release rate (MHRR) by itself, combustible.

Experimental Study on the Effect of Flow around Solid Combustibles and Thermal Thickness on Heat Release Rate Characteristics (고체 가연물 주위의 유동과 열적 두께의 변화가 열방출률 특성에 미치는 영향에 관한 실험적 연구)

  • Hong, Ter-Ki;Seo, Dong-Pyo;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.28-34
    • /
    • 2020
  • In this study, an ISO 5660-1 cone calorimeter experiment was conducted to examine the effects of changes in flow and thermal thickness around solid combustibles on heat release rate characteristics. Polymethyl methacrylate (PMMA) is a solid combustible material that does not generate char during the combustion reaction. Hence, it was selected for the experiment, and the thermal penetration depth was calculated to distinguish the thermal thickness of PMMA. Furthermore, the thermal decomposition characteristics were analyzed by measuring the heat release rate measured during the combustion of PMMA. This was performed after generating the forced flow around the combustibles by setting the duct flow of the cone calorimeter to 12, 24, and 40 L/s. The results confirmed that the thermal release rate of the thermally thin combustible material was not significantly affected by the change in the surrounding flow. Hence, the thermally thick combustible material was significantly affected by the change in the flow rate.

Effects of Char Produced from Burning Wood Combustibles on Thermal Pyrolysis (목재 가연물의 연소 시 생성되는 탄화가 열분해에 미치는 영향)

  • Hong, Ter-Ki;Ryu, Myung-Ho;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.7-12
    • /
    • 2019
  • To investigate the influence of the char layer formed during the combustion process on the pyrolysis of wood combustibles, ISO 5660-1 cone calorimetry experiments and Fire dynamics simulator (FDS) simulations were performed, and the results from these two methods were compared. The wood combustible selected as the fuel for this study, Douglas fir, has been widely used for the production of building materials, furniture, etc. The heat release rate (HRR) measured from the cone calorimetry experiment was in good agreement with the result predicted by the FDS simulation. However, the FDS simulation failed to predict the heat released by the smoldering combustion process, due to the absence of the char surface reaction in the model. The FDS simulation results clearly indicate that the char layer formed on the surface of combustibles produces a thermal barrier which prevents heat transfer to the interior, thickening the thermal depth and thus reducing the pyrolysis rate of combustibles.