Cold Plasma Treatment Application to Improve Microbiological Safety of Infant Milk Powder and Onion Powder

콜드 플라즈마 처리를 이용한 분유와 양파분말 살균

  • Oh, Yeong Ji (Department of Food Science and Technology, Seoul Women's University) ;
  • Lee, Hanna (Department of Food Science and Technology, Seoul Women's University) ;
  • Kim, Jung Eun (Department of Food Science and Technology, Seoul Women's University) ;
  • Lee, Seok Hoon (R&D Division, Biovan Co.) ;
  • Cho, Hyung Yong (Department of Food Science & Biotechnology, CHA University) ;
  • Min, Sea Cheol (Department of Food Science and Technology, Seoul Women's University)
  • Received : 2015.06.24
  • Accepted : 2015.07.19
  • Published : 2015.08.31


The potential of applying cold plasma (CP) treatments to improve microbiological safety of powdered products has been investigated using infant milk powder (IMP) and onion powder (OP). Among the different kinds of CP-forming gases, He-$O_2$ (99.8:0.2) gas mixture and He gas were most effective in reducing the number of Cronobacter sakazakii in IMP and Bacillus cereus spores in OP, respectively. C. sakazakii counts in IMP decreased by $0.9{\pm}0.1{\log}\;CFU/g$ after CP treatment, and the extent of C. sakazakii inhibition increased in a time-dependent manner. CP treatment at 900 W for 20 min reduced the number of B. cereus spores by ~0.4 log spores/g. Treatments that integrated CP with microwave (MW-CP treatment) as well as those that integrated CP with heat and microwave (H-MW-CP treatment) resulted in a 90% reduction in the number of spores in OP. Thus, CP treatments demonstrated potential for decontaminating foodborne pathogens from powdered products, in combination with heat for improved effect.

분유 분말의 C. sakazakii와 양파 분말의 B. cereus의 포자를 저해하는데 있어 가장 효과적인 플라즈마 형성 가스는 각각 He-$O_2$와 He이었다. 분유 분말에 대한 콜드 플라즈마 처리시간이 길어질수록 그리고 형성 전력이 높아질수록 C. sakazakii의 저해도가 커졌으며, 900W, 40분 처리시 가장 큰 저해율을 나타내었다. 양파 분말에 접종된 B. cereus 포자는 콜드 플라즈마 단독 처리와 마이크로파와 병합된 콜드 플라즈마 처리에 대하여 강한 저항력을 가지고 있었으나 열처리($90^{\circ}C$, 1분)를 두 형태의 플라즈마 처리에 선병합시켰을 때 약 90%가 저해되었다. 병합 처리한 결과, 각각의 방법을 단독으로 처리한 것보다 병합 처리시 B. cereus 포자의 저해율(약 1.0 log spores/g)이 높아졌다. 본 연구는 분체 식품에 존재하는 식중독 균의 효율적인 살균 방법을 제시하였고, 분체 식품의 새로운 살균 공정으로서의 콜드 플라즈마의 적용 가능성을 보여주었다.



Supported by : 농림축산식품부


  1. Dungbuk Reigional Statistics Korea. Cultivation area for onion and garlic in Korea, 2015. Available from: Accessed Mar. 2, 2015.
  2. Kim JG, Shim JY. Quality Characteristics of Wheat flour noodle added with onion powder. Food Eng. Prog. 10: 269-274 (2006)
  3. Dziki D, Rozylo R, Gawlik-Dziki U, Swieca M. Current trends in the enhancement of antioxidant activity of wheat bread by the addition of plant materials rich in phenolic compounds. Trends Food Sci. Technol. 40: 48-61 (2014)
  4. Pezzutti A, Marucci PL, Sica MG, Matzkin MR, Croci CA. Gamma-ray sanitization of argentinean dehydrated garlic (Allium Sativum L.) and onion (Allium Cepa L.) products. Food Res. Int. 38: 797-802 (2005)
  5. Irkin R, Korukluoglu M. Control of some filamentous fungi and yeasts by dehydrated allium extracts. J. Verbr. Lebensm. 4: 3-6 (2009)
  6. Hunter CJ, Petrosyan M, Ford HR, Prasadarao NV. Enterobacter Sakazakii: An emerging pathogen in infants and neonates. Surg. Infect. 9: 533-539 (2008)
  7. Healy B, Cooney S, O'Brien S, Iversen C, Whyte P, Nally J, Callanan JJ, Fanning S. Cronobacter (Enterobacter Sakazakii): An opportunistic foodborne pathogen. Foodborne Pathog. Dis. 7: 339-350 (2010)
  8. Anto A, Bv K, Gc J, Hebbar HU. Recent developments in superheated steam processing of foods-A review. Crit. Rev. Food Sci. Nutr. published on-line (2014)
  9. Tateo F, Bononi M. Determination of ethylene chlorohydrin as marker of spices fumigation with ethylene oxide. J. Food Compos. Anal. 19: 83-87 (2006)
  10. Farkas J. Radiation decontamination of spices, herbs, condiments and other dried food ingredients. pp. 291-312. In: Food irradiation: Principles and Applications. Molins RA (ed). John Wiles & Sons, New York, NY, USA (2001)
  11. Cheon HL, Shin JY, Park KH, Chung MS, Kang DH. Inactivation of foodborne pathogens in powdered red pepper (Capsicum annuum L.) using combined UV-C irradiation and mild heat treatment. Food Control 50: 441-445 (2015)
  12. Aydin A, Boston K. Microbial decontamination of powdered black pepper (Piper nigrum L.) by using microwave. J. Food Sci. Technol. 43: 575-578 (2006)
  13. Tsujimoto H, Huang CC, Kinoshita N, Inoue Y, Eitoku H, Sekiguchi I. Ultra-high pressure sterilization of powdery food stuff-a new application of a roller compactor. Powder Technol. 146: 214-222 (2004)
  14. Lee SB, Uhm BH, Yoon WB. Effect of high pressure processing on the rancidity of yeonhaeju soybean (bazaz) powder during storage. Food Eng. Prog. 15: 209-213 (2011)
  15. Kim SY, Sagong HG, Choi SH, Ryu S, Kang DH. Radio-frequency heating to inactivate Salmonella typhimurium and Escherichia coli O157: H7 on black and red pepper spice. Int. J. Food Microbiol. 153: 171-175 (2012)
  16. Taechapairoj C, Dhuchakallaya I, Soponronnarit S, Wetchacama S, Prachayawarakorn S. Superheated steam fluidised bed paddy drying. J. Food Eng. 58: 67-73 (2003)
  17. Lee HN, Kim JE, Chung MS, Min SC. Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiol. 51: 74-80 (2015)
  18. Kim JE, Lee DU, Min SC. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 38: 128-136 (2014)
  19. Niemira BA. Cold plasma decontamination of foods. Annu. Rev. Food Sci. Technol. 3: 125-142 (2012)
  20. Finley N, Fields ML. Heat activation and heat-induced dormancy of Bacillus stearothermophilus spores. Appl. Environ. Microb. 10: 231-236 (1962)
  21. Song AY, Oh YA, Oh SJ, Min SC. Cold plasma treatment effects on the physicochemical and biodegradable properties of a corn biomass-containing polyester film. Korean J. Food Sci. Technol. 47: 224-232 (2015)
  22. Sun P, Sun Y, Wu H, Zhu W, Lopez JL, Liu W, Zhang J, Li R, Fang J. Atmospheric pressure cold plasma as an antifungal therapy. Appl. Phys. Lett. 98: 021501 (2011)
  23. Chen W, Huang J, Du N, Liu XD, Wang XQ, Lv GH, Zhang GP, Guo LH, Yang SZ. Treatment of Enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition. J. Appl. Phys. 112: 013304 (2012)
  24. Nair M, Kumar M, Joy J, Venkitanarayanan KS. Inactivation of Enterobacter sakazakii in reconstituted infant formula by monocaprylin. J. Food Protect. 67: 2815-2819 (2004)
  25. Joshi DK, Fleischman GJ, Keller S, Narayanan K, Anderson NM. Non-thermal decontamination of a model dry particle food system. In: Abstracts: IFT Annual Meeting. July 17-20, McCormick Place South, Chicago, IL, USA. Institute of Food Technologists, Chicago, IL, USA (2010)
  26. Arku B, Fanning S, Jordan K. Flow cytometry to assess biochemical pathways in heat-stressed Cronobacter spp. (formerly Enterobacter Sakazakii). J. Appl. Microbiol. 111: 616-624 (2011)
  27. Arroyo C, Cebrian G, Pagan R, Condon S. Inactivation of Cronobacter sakazakii by manothermosonication in buffer and milk. Int. J. Food Microbiol. 151: 21-28 (2011)
  28. Alderton G, Ito KA, Chen JK. Chemical manipulation of the heat resistance of Clostridium botulinum spores. Appl. Environ. Microb. 31: 492-498 (1976)
  29. Tomida M, Suwa N, Machida H, Nishimura A, Makino S. Inhibition of germination of Bacillus stearothermophilus spores by sucrose monoalkylates and other surfactants. Jpn. Soc. Food Sci. Technol. 38: 1044-1049 (1991)
  30. Leuschner RGK, Lillford PJ. Effects of temperature and heat activation on germination of individual spores of Bacillus subtilis. Lett. Appl. Microbiol. 29: 228-232 (1999)

Cited by

  1. Moisture vaporization-combined helium dielectric barrier discharge-cold plasma treatment for microbial decontamination of onion flakes vol.84, 2018,
  2. Effect of Atmospheric Pressure Plasma on the Quality of Commercially Available Sunsik vol.31, pp.5, 2016,
  3. Helium dielectric barrier discharge-cold plasma treatment for microbiological safety and preservation of onion powder vol.48, pp.5, 2016,
  4. Bacterial spore inactivation induced by cold plasma pp.1549-7852, 2019,