References
- Aachen, A. (2010), Lord Corporation Business Development Manager Europe, Lord MR fluids technical summary, Private Communication.
- Blake, J. and Gurocak, H.B. (2009), "Haptic glove with MR brakes for virtual reality", Trans. Mechatron., 14(5), 606-615. https://doi.org/10.1109/TMECH.2008.2010934
- Brunn, P.O. and Abu-Jdayil, B. (2007), "Axial annular flow of plastic fluids: dead zones and plug-free flow", Rheol. Acta., 46(4), 449-454. https://doi.org/10.1007/s00397-006-0139-6
- Choi, Y.T. and Wereley, N.M. (2003), "Vibration control of a landing gear system featuring electrorheological/magnetorheological fluids", J. Aircraft, 40(3), 432-439. https://doi.org/10.2514/2.3138
- Choi, S.B. and Kim, K.S. (2005), "Tensile and compressive behaviours of smart electrorheological materials", Key Eng. Mater., 297-300, 646-652. https://doi.org/10.4028/www.scientific.net/KEM.297-300.646
- Choi, B.H., Nam, Y.J., Yamane, R. and Park, M.K., (2009), "Effect of cluster formation on dynamic response of an electrorheological fluid in shear flow", Proceedings of the 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions, Journal of Physics: Conference Series 149 (2009) 012004.
- Chooi, W.W. and Oyadiji, S.O. (2008), "Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions", Comput. Struct., 86(3-5), 473-482. https://doi.org/10.1016/j.compstruc.2007.02.002
- Delphi Energy & Chassis Systems (2002), Pub. DE-00-E-019.
- El Wahed, A.K., Sproston, J.L. and Stanway, R. (1998), "The performance of an electrorheological fluid in dynamic squeeze flow under constant voltage and constant field", J. Phys. D: Appl. Phys., 31, 2964-2674. https://doi.org/10.1088/0022-3727/31/20/033
- El Wahed, A.K., Sproston, J.L. and Schleyer, G.K. (2002a), "Electrorheological and magnetorheological fluids in blast resistant design applications", Mater. Design, 23(4), 391-404. https://doi.org/10.1016/S0261-3069(02)00003-1
- El Wahed, A.K., Sproston, J.L. and Stanway, R. (2002b), "The rheological characteristics of electrorheological fluids in dynamic squeeze", J. Intell. Mat. Syst. Str., 13(10), 655-660. https://doi.org/10.1177/1045389X02013010008
- El Wahed, A.K., Stanway, R. and Sproston, J.L. (2003a), "The influence of mechanical input amplitude on the dynamic response of an electrorheological fluid in squeeze flow", Int. J. Vehicle Des., 33(1-3), 153-170. https://doi.org/10.1504/IJVD.2003.003649
- El Wahed, A.K., Sproston, J.L. and Stanway, R. (2003b), "An improved model of ER fluids in squeeze-flow through model updating of the estimated yield stress", J. Sound Vib., 268(3), 581-599. https://doi.org/10.1016/S0022-460X(03)00374-2
- El Wahed, A.K. (2008), "Performance evaluation of electrorheological fluids under mixed shear and squeeze mode", Proceedings of the 11th Int. Conf. New Actuators, Bremen, Germany.
- El Wahed, A.K. (2011), "The influence of solid-phase concentration on the performance of electrorheological fluids in dynamic squeeze flow", Mater. Design, 32(3), 1420-1426. https://doi.org/10.1016/j.matdes.2010.09.003
- El Wahed, A.K. and McEwan, C.A. (2011), "Design and performance evaluation of magnetorheological fluids under single and mixed modes", J. Intell. Mat. Syst. Str., 22(7), 631-643. https://doi.org/10.1177/1045389X11404453
- Esmonde, H., See, H. and Swain, M.V. (2009), "Modelling of ER squeeze films at low amplitude oscillations", J. Non-Newtonian Fluid Mech., 161(1-3), 101-108. https://doi.org/10.1016/j.jnnfm.2009.05.002
- Farjoud, A., Vahdati, N. and Yap Fook, F. (2008), "MR-fluid yield surface determination in disc-type MR rotary brakes", Smart Mater. Struct., 17(3), 1-8.
- Farjoud, A., Cavey, R., Ahmadian, M. and Craft, M. (2009), "Magneto-rheological fluid behavior in squeeze mode", Smart Mater. Struct., 18(9), 1-8.
- Ghaednia, H. and Ohadi, A. (2010), "Effect of thermal growth on vibration behavior of flexible rotor system mounted on MR squeeze film damper", Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, paper ESDA2010-24864.
- Goldasz, J. and Sapinski, B. (2012), "Nondimensional characterization of flow-mode magnetorheological/electrorheological fluid dampers", J. Intell. Mat. Syst. Str., 23(14), 1545-1562. https://doi.org/10.1177/1045389X12447293
- Guo, C., Gong, X., Xuan, S., Zong, L. and Peng, C. (2012), "Normal forces of magnetorheological fluids under oscillatory shear", J. Magn. Magn. Mater., 324(6), 1218-1224. https://doi.org/10.1016/j.jmmm.2011.11.013
- Guo, C., Gong, X., Xuan, S., Yan, Q. and Ruan, X. (2013), "Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field", Smart Mater. Struct., 22, 045020, (7pp). https://doi.org/10.1088/0964-1726/22/4/045020
- Guth, D., Wiebe, A. and Maas, J. (2013), "Design of shear gaps for high-speed and high-load MRF brakes and clutches", Proceedings of the 13th Int. Conf. on Electrorheological Fluids and Magnetorheological Suspensions (ERMR2012), Journal of Physics: Conference Series, 412 (2013) 012046.
- Hemmatian, M. and Ohadi, A. (2013), "Sliding mode control of flexible rotor based on estimated model of magnetorheological squeeze film damper", J. Vib. Acoust., 135(5), 051023 (11 pages). https://doi.org/10.1115/1.4024609
- Jang, K.I., Min, B.K. and Seok, J. (2011), "A behavior model of a magnetorheological fluid in direct shear mode", J. Magn. Magn. Mater., 323(10), 1324-1329. https://doi.org/10.1016/j.jmmm.2010.11.039
- Johnson, L. (2008), "Electrorheological dampers for industrial and mobile applications-an overview of design variations, product realisation and performance", Proceedings of the 11th Int. Conf. New Actuators, Bremen, Germany.
- Jolly, M.R. and Carlson, J.D. (1996), "Controllable squeeze film damping using magnetorheological fluid", Proceedings of the 5th Int. Conf. New Actuators, Bremen, Germany.
- Jung, W.J., Jeong, W.B., Hong, S.R. and Choi, S.B. (2004), "Vibration control of a flexible beam structure using squeeze-mode ER mount", J. Sound Vib., 273(1-2), 185-199. https://doi.org/10.1016/S0022-460X(03)00478-4
- Karakoc, K., Park, E.J. and Suleman, A. (2008), "Design considerations for an automotive magnetorheological brake", Mechatron., 18(8), 434-447. https://doi.org/10.1016/j.mechatronics.2008.02.003
- Kaluvan, S. and Choi, S.B. (2014), "Design of current sensor using a magnetorheological fluid in shear mode", Smart Mater. Struct., 23, 127003 (7pp). https://doi.org/10.1088/0964-1726/23/12/127003
- Khanicheh, A. Mintzopoulos, D., Weinberg, B., Tzika, A.A. and Mavroidis, C. (2008), "Evaluation of electrorheological fluid dampers for applications at 3-T MRI environment", Trans. Mechatron., 13(3), 286-294. https://doi.org/10.1109/TMECH.2008.924043
- Kim, K.J., Lee, C.W. and Koo, J.H. (2009), "Optimal positioning and control of a MR-squeeze film damper for reducing unbalanced vibrations in a rotor system with multiple masses", J. Vib. Acoust., 131(4), paper 041006.
- Lange, U., Richter, L. and Zipser, L. (2001), "Flow of magnetorheological fluids", J. Intell. Mat. Syst. Str., 12(3), 161-164. https://doi.org/10.1106/PF05-DTU2-2QTD-28B6
- Li, W.H., Du, H., Chen, G. and Yeo, S.H. (2001), "Viscoelastic properties of MR fluids under oscillatory shear", Proceedings of the SPIE 4331, Smart Structures and Materials 2001: Damping and Isolation, Newport Beach, CA, USA.
- Liao, C.R., Zhao, D.X., Xie, L. and Liu, Q. (2012), "A design methodology for a magnetorheological fluid damper based on a multi-stage radial flow mode", Smart Mater. Struct., 21, 085005 (12pp). https://doi.org/10.1088/0964-1726/21/8/085005
- Lin, C., Yau, H., Lee, C. and Tung, K. (2013), "System identification and semiactive control of a squeeze-mode magnetorheological damper", IEEE/ASME T. Mechatronics, 18, 6, 1691. https://doi.org/10.1109/TMECH.2013.2279852
- Maiti, D.K., Shyju, P.P. and Vijayaraju, K. (2006), "Vibration control of mechanical systems using semi-active MR-damper", Smart Struct. Syst., 2(1), 61-80. https://doi.org/10.12989/sss.2006.2.1.061
- Mazlan, S.A., Ekreem, N.B. and Olabi, A.G. (2008), "Apparent stress-strain relationships in experimental equipment where magnetorheological fluids operate under compression mode", J. Phys. D: Appl. Phys., 41(9), 095002. https://doi.org/10.1088/0022-3727/41/9/095002
- Monkman, G. (1995), "The electrorheological effect under compressive stress", J. Phy. D: Appl. Phys., 28(3), 588-593. https://doi.org/10.1088/0022-3727/28/3/022
- Nakano, M. and Nagata, T. (2002), "ER properties and flow-induced microstructures of an ER fluid between two parallel disk electrodes in squeeze flow mode", Int. J. Modern Phys. B, 16(17-18), 2555-2561. https://doi.org/10.1142/S0217979202012657
- Nam, Y.J., Park, M.K. and Yamane, R. (2008), "Dynamic responses of electrorheological fluid in steady pressure flow", Exp. Fluids, 44(6), 915-926. https://doi.org/10.1007/s00348-007-0449-1
- Nishiyama, H., Takana, H., Shinohara, K., Mizuki, K., Katagiri, K. and Ohta, M. (2011), "Experimental analysis on MR fluid channel flow dynamics with complex fluidwall interactions", J. Magn. Magn. Mater., 323(10), 1293-1297. https://doi.org/10.1016/j.jmmm.2010.11.033
- Pahlavan, L. and Rezaeepazhand, J. (2007), "Dynamic response analysis and vibration control of a cantilever beam with a squeeze-mode electrorheological damper", Smart Mater. Struct., 16(6), 2183-2189. https://doi.org/10.1088/0964-1726/16/6/021
- Pang, L., Kamath, J.M. and Wereley, N.M. (1997), "Analysis and testing of a linear stroke magnetorheological damper", AIAA/ASME Adaptive Structures Forum, Long Beach, CA, USA, paper no. AIAA 98-2040.
- Rabinow, J. (1949), "The magnetic fluid clutch", AIEE Trans., 67, 1308-1315.
- Rufai, O.R. and Ayeni, R.O. (2010), "Non-Newtonian fluid flow between parallel plates", Proceedings of the 10th Int Congress Fluid Dyn., Ain Soukhna, Egypt.
- Sato, Y., Shiraishi, T. and Morishita, S. (2007), "Design of magnetorheological devices based on flow modes", Int. J. Appl. Electromagn. M., 25, 607-611.
- Spaggiari, A. and Dragoni, E. (2012), "Effect of pressure on the flow properties of magnetorheological fluids", J. Fluids Eng, 134(9), 091103-1 to 091103-9. https://doi.org/10.1115/1.4007257
- Stanway, R., Sproston, J.L., Prendergast, M.J., Case, J.R. and Wilne, C.E. (1992), "ER fluids in the squeeze-flow mode: an application to vibration isolation", J. Electrostat., 28(1), 89-94. https://doi.org/10.1016/0304-3886(92)90029-S
- Stanway, R., Sproston, J.L. and El Wahed, A.K. (1996), "Applications of electrorheological fluids in vibration control: a survey", Smart Mater. Struct., 5(4), 464-482. https://doi.org/10.1088/0964-1726/5/4/011
- Tian, Y., Wen, S. and Meng, Y. (2003), "Compressions of electrorheological fluids under different initial gap distances", Phys. Rev. E, 67(5), 051501. https://doi.org/10.1103/PhysRevE.67.051501
- Wang, X. and Gordaninejad, F. (2006), "Study of magnetorheological fluids at high shear rates", Rheologica Acta, 45, 899-908. https://doi.org/10.1007/s00397-005-0058-y
- Wang, J., Feng, N., Meng, G. and Hanh, E.J. (2006), "Vibration control of rotor by squeeze film damper with magnetorheological fluid", J. Intell. Mat. Syst. Str., 17(4), 353-357. https://doi.org/10.1177/1045389X06055623
- Wilson, C.M.D. and Abdullah, M.M. (2010), "Structural vibration reduction using self-tuning fuzzy control of magnetorheological dampers", Bull. Earthq. Eng., 8(4), 1037-1054. https://doi.org/10.1007/s10518-010-9177-7
- Winslow, W.M. (1949), "Induced fibrillation of suspensions", J. Appl. Phys., 20, 1137-1140. https://doi.org/10.1063/1.1698285
- Zapomel, J., Ferfecki, P. and Forte, P. (2012), "A computational investigation of the transient response of an unbalanced rigid rotor flexibly supported and damped by short magnetorheological squeeze film dampers", Smart Mater. Struct., 21(10), 105011. https://doi.org/10.1088/0964-1726/21/10/105011
- Zhu, C. (2007), "Controllability of a magnetorheological fluid squeeze film damper under sinusoidal magnetic field", Key Eng. Mater., 334-335, 1089-1092. https://doi.org/10.4028/www.scientific.net/KEM.334-335.1089
Cited by
- An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.053
- The performance of a smart ball-and-socket actuator applied to upper limb rehabilitation vol.29, pp.13, 2018, https://doi.org/10.1177/1045389X18780349
- Performance Evaluation of a Magnetorheological Fluid Damper Using Numerical and Theoretical Methods With Experimental Validation vol.6, pp.2296-8016, 2019, https://doi.org/10.3389/fmats.2019.00027
- Energy-Harvesting Adaptive Vibration Damping in High-Speed Train Suspension Using Electromagnetic Dampers vol.21, pp.14, 2015, https://doi.org/10.1142/s0219455421400022