DOI QR코드

DOI QR Code

Magnetorheological fluids subjected to tension, compression, and oscillatory squeeze input

  • El Wahed, Ali K. (Department of Mechanical Engineering & Mechatronics, University of Dundee) ;
  • Balkhoyor, Loaie B. (Department of Mechanical Engineering & Mechatronics, University of Dundee)
  • Received : 2014.12.03
  • Accepted : 2015.04.25
  • Published : 2015.11.25

Abstract

Magnetorheological (MR) fluids are capable of changing their rheological properties under the application of external fields. When MR fluids operate in the so-called squeeze mode, in which displacement levels are limited to a few millimetres but there are large forces, they have many potential applications in vibration isolation. This paper presents an experimental and a numerical investigation of the performance of an MR fluid under tensile and compressive loads and oscillatory squeeze-flow. The performance of the fluid was found to depend dramatically on the strain direction. The shape of the stress-strain hysteresis loops was affected by the strength of the applied field, particularly when the fluid was under tensile loading. In addition, the yield force of the fluid under the oscillatory squeeze-flow mode changed almost linearly with the applied electric or magnetic field. Finally, in order to shed further light on the mechanism of the MR fluid under squeeze operation, computational fluid dynamics analyses of non-Newtonian fluid behaviour using the Bingham-plastic model were carried out. The results confirmed superior fluid performance under compressive inputs.

Keywords

References

  1. Aachen, A. (2010), Lord Corporation Business Development Manager Europe, Lord MR fluids technical summary, Private Communication.
  2. Blake, J. and Gurocak, H.B. (2009), "Haptic glove with MR brakes for virtual reality", Trans. Mechatron., 14(5), 606-615. https://doi.org/10.1109/TMECH.2008.2010934
  3. Brunn, P.O. and Abu-Jdayil, B. (2007), "Axial annular flow of plastic fluids: dead zones and plug-free flow", Rheol. Acta., 46(4), 449-454. https://doi.org/10.1007/s00397-006-0139-6
  4. Choi, Y.T. and Wereley, N.M. (2003), "Vibration control of a landing gear system featuring electrorheological/magnetorheological fluids", J. Aircraft, 40(3), 432-439. https://doi.org/10.2514/2.3138
  5. Choi, S.B. and Kim, K.S. (2005), "Tensile and compressive behaviours of smart electrorheological materials", Key Eng. Mater., 297-300, 646-652. https://doi.org/10.4028/www.scientific.net/KEM.297-300.646
  6. Choi, B.H., Nam, Y.J., Yamane, R. and Park, M.K., (2009), "Effect of cluster formation on dynamic response of an electrorheological fluid in shear flow", Proceedings of the 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions, Journal of Physics: Conference Series 149 (2009) 012004.
  7. Chooi, W.W. and Oyadiji, S.O. (2008), "Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions", Comput. Struct., 86(3-5), 473-482. https://doi.org/10.1016/j.compstruc.2007.02.002
  8. Delphi Energy & Chassis Systems (2002), Pub. DE-00-E-019.
  9. El Wahed, A.K., Sproston, J.L. and Stanway, R. (1998), "The performance of an electrorheological fluid in dynamic squeeze flow under constant voltage and constant field", J. Phys. D: Appl. Phys., 31, 2964-2674. https://doi.org/10.1088/0022-3727/31/20/033
  10. El Wahed, A.K., Sproston, J.L. and Schleyer, G.K. (2002a), "Electrorheological and magnetorheological fluids in blast resistant design applications", Mater. Design, 23(4), 391-404. https://doi.org/10.1016/S0261-3069(02)00003-1
  11. El Wahed, A.K., Sproston, J.L. and Stanway, R. (2002b), "The rheological characteristics of electrorheological fluids in dynamic squeeze", J. Intell. Mat. Syst. Str., 13(10), 655-660. https://doi.org/10.1177/1045389X02013010008
  12. El Wahed, A.K., Stanway, R. and Sproston, J.L. (2003a), "The influence of mechanical input amplitude on the dynamic response of an electrorheological fluid in squeeze flow", Int. J. Vehicle Des., 33(1-3), 153-170. https://doi.org/10.1504/IJVD.2003.003649
  13. El Wahed, A.K., Sproston, J.L. and Stanway, R. (2003b), "An improved model of ER fluids in squeeze-flow through model updating of the estimated yield stress", J. Sound Vib., 268(3), 581-599. https://doi.org/10.1016/S0022-460X(03)00374-2
  14. El Wahed, A.K. (2008), "Performance evaluation of electrorheological fluids under mixed shear and squeeze mode", Proceedings of the 11th Int. Conf. New Actuators, Bremen, Germany.
  15. El Wahed, A.K. (2011), "The influence of solid-phase concentration on the performance of electrorheological fluids in dynamic squeeze flow", Mater. Design, 32(3), 1420-1426. https://doi.org/10.1016/j.matdes.2010.09.003
  16. El Wahed, A.K. and McEwan, C.A. (2011), "Design and performance evaluation of magnetorheological fluids under single and mixed modes", J. Intell. Mat. Syst. Str., 22(7), 631-643. https://doi.org/10.1177/1045389X11404453
  17. Esmonde, H., See, H. and Swain, M.V. (2009), "Modelling of ER squeeze films at low amplitude oscillations", J. Non-Newtonian Fluid Mech., 161(1-3), 101-108. https://doi.org/10.1016/j.jnnfm.2009.05.002
  18. Farjoud, A., Vahdati, N. and Yap Fook, F. (2008), "MR-fluid yield surface determination in disc-type MR rotary brakes", Smart Mater. Struct., 17(3), 1-8.
  19. Farjoud, A., Cavey, R., Ahmadian, M. and Craft, M. (2009), "Magneto-rheological fluid behavior in squeeze mode", Smart Mater. Struct., 18(9), 1-8.
  20. Ghaednia, H. and Ohadi, A. (2010), "Effect of thermal growth on vibration behavior of flexible rotor system mounted on MR squeeze film damper", Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, paper ESDA2010-24864.
  21. Goldasz, J. and Sapinski, B. (2012), "Nondimensional characterization of flow-mode magnetorheological/electrorheological fluid dampers", J. Intell. Mat. Syst. Str., 23(14), 1545-1562. https://doi.org/10.1177/1045389X12447293
  22. Guo, C., Gong, X., Xuan, S., Zong, L. and Peng, C. (2012), "Normal forces of magnetorheological fluids under oscillatory shear", J. Magn. Magn. Mater., 324(6), 1218-1224. https://doi.org/10.1016/j.jmmm.2011.11.013
  23. Guo, C., Gong, X., Xuan, S., Yan, Q. and Ruan, X. (2013), "Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field", Smart Mater. Struct., 22, 045020, (7pp). https://doi.org/10.1088/0964-1726/22/4/045020
  24. Guth, D., Wiebe, A. and Maas, J. (2013), "Design of shear gaps for high-speed and high-load MRF brakes and clutches", Proceedings of the 13th Int. Conf. on Electrorheological Fluids and Magnetorheological Suspensions (ERMR2012), Journal of Physics: Conference Series, 412 (2013) 012046.
  25. Hemmatian, M. and Ohadi, A. (2013), "Sliding mode control of flexible rotor based on estimated model of magnetorheological squeeze film damper", J. Vib. Acoust., 135(5), 051023 (11 pages). https://doi.org/10.1115/1.4024609
  26. Jang, K.I., Min, B.K. and Seok, J. (2011), "A behavior model of a magnetorheological fluid in direct shear mode", J. Magn. Magn. Mater., 323(10), 1324-1329. https://doi.org/10.1016/j.jmmm.2010.11.039
  27. Johnson, L. (2008), "Electrorheological dampers for industrial and mobile applications-an overview of design variations, product realisation and performance", Proceedings of the 11th Int. Conf. New Actuators, Bremen, Germany.
  28. Jolly, M.R. and Carlson, J.D. (1996), "Controllable squeeze film damping using magnetorheological fluid", Proceedings of the 5th Int. Conf. New Actuators, Bremen, Germany.
  29. Jung, W.J., Jeong, W.B., Hong, S.R. and Choi, S.B. (2004), "Vibration control of a flexible beam structure using squeeze-mode ER mount", J. Sound Vib., 273(1-2), 185-199. https://doi.org/10.1016/S0022-460X(03)00478-4
  30. Karakoc, K., Park, E.J. and Suleman, A. (2008), "Design considerations for an automotive magnetorheological brake", Mechatron., 18(8), 434-447. https://doi.org/10.1016/j.mechatronics.2008.02.003
  31. Kaluvan, S. and Choi, S.B. (2014), "Design of current sensor using a magnetorheological fluid in shear mode", Smart Mater. Struct., 23, 127003 (7pp). https://doi.org/10.1088/0964-1726/23/12/127003
  32. Khanicheh, A. Mintzopoulos, D., Weinberg, B., Tzika, A.A. and Mavroidis, C. (2008), "Evaluation of electrorheological fluid dampers for applications at 3-T MRI environment", Trans. Mechatron., 13(3), 286-294. https://doi.org/10.1109/TMECH.2008.924043
  33. Kim, K.J., Lee, C.W. and Koo, J.H. (2009), "Optimal positioning and control of a MR-squeeze film damper for reducing unbalanced vibrations in a rotor system with multiple masses", J. Vib. Acoust., 131(4), paper 041006.
  34. Lange, U., Richter, L. and Zipser, L. (2001), "Flow of magnetorheological fluids", J. Intell. Mat. Syst. Str., 12(3), 161-164. https://doi.org/10.1106/PF05-DTU2-2QTD-28B6
  35. Li, W.H., Du, H., Chen, G. and Yeo, S.H. (2001), "Viscoelastic properties of MR fluids under oscillatory shear", Proceedings of the SPIE 4331, Smart Structures and Materials 2001: Damping and Isolation, Newport Beach, CA, USA.
  36. Liao, C.R., Zhao, D.X., Xie, L. and Liu, Q. (2012), "A design methodology for a magnetorheological fluid damper based on a multi-stage radial flow mode", Smart Mater. Struct., 21, 085005 (12pp). https://doi.org/10.1088/0964-1726/21/8/085005
  37. Lin, C., Yau, H., Lee, C. and Tung, K. (2013), "System identification and semiactive control of a squeeze-mode magnetorheological damper", IEEE/ASME T. Mechatronics, 18, 6, 1691. https://doi.org/10.1109/TMECH.2013.2279852
  38. Maiti, D.K., Shyju, P.P. and Vijayaraju, K. (2006), "Vibration control of mechanical systems using semi-active MR-damper", Smart Struct. Syst., 2(1), 61-80. https://doi.org/10.12989/sss.2006.2.1.061
  39. Mazlan, S.A., Ekreem, N.B. and Olabi, A.G. (2008), "Apparent stress-strain relationships in experimental equipment where magnetorheological fluids operate under compression mode", J. Phys. D: Appl. Phys., 41(9), 095002. https://doi.org/10.1088/0022-3727/41/9/095002
  40. Monkman, G. (1995), "The electrorheological effect under compressive stress", J. Phy. D: Appl. Phys., 28(3), 588-593. https://doi.org/10.1088/0022-3727/28/3/022
  41. Nakano, M. and Nagata, T. (2002), "ER properties and flow-induced microstructures of an ER fluid between two parallel disk electrodes in squeeze flow mode", Int. J. Modern Phys. B, 16(17-18), 2555-2561. https://doi.org/10.1142/S0217979202012657
  42. Nam, Y.J., Park, M.K. and Yamane, R. (2008), "Dynamic responses of electrorheological fluid in steady pressure flow", Exp. Fluids, 44(6), 915-926. https://doi.org/10.1007/s00348-007-0449-1
  43. Nishiyama, H., Takana, H., Shinohara, K., Mizuki, K., Katagiri, K. and Ohta, M. (2011), "Experimental analysis on MR fluid channel flow dynamics with complex fluidwall interactions", J. Magn. Magn. Mater., 323(10), 1293-1297. https://doi.org/10.1016/j.jmmm.2010.11.033
  44. Pahlavan, L. and Rezaeepazhand, J. (2007), "Dynamic response analysis and vibration control of a cantilever beam with a squeeze-mode electrorheological damper", Smart Mater. Struct., 16(6), 2183-2189. https://doi.org/10.1088/0964-1726/16/6/021
  45. Pang, L., Kamath, J.M. and Wereley, N.M. (1997), "Analysis and testing of a linear stroke magnetorheological damper", AIAA/ASME Adaptive Structures Forum, Long Beach, CA, USA, paper no. AIAA 98-2040.
  46. Rabinow, J. (1949), "The magnetic fluid clutch", AIEE Trans., 67, 1308-1315.
  47. Rufai, O.R. and Ayeni, R.O. (2010), "Non-Newtonian fluid flow between parallel plates", Proceedings of the 10th Int Congress Fluid Dyn., Ain Soukhna, Egypt.
  48. Sato, Y., Shiraishi, T. and Morishita, S. (2007), "Design of magnetorheological devices based on flow modes", Int. J. Appl. Electromagn. M., 25, 607-611.
  49. Spaggiari, A. and Dragoni, E. (2012), "Effect of pressure on the flow properties of magnetorheological fluids", J. Fluids Eng, 134(9), 091103-1 to 091103-9. https://doi.org/10.1115/1.4007257
  50. Stanway, R., Sproston, J.L., Prendergast, M.J., Case, J.R. and Wilne, C.E. (1992), "ER fluids in the squeeze-flow mode: an application to vibration isolation", J. Electrostat., 28(1), 89-94. https://doi.org/10.1016/0304-3886(92)90029-S
  51. Stanway, R., Sproston, J.L. and El Wahed, A.K. (1996), "Applications of electrorheological fluids in vibration control: a survey", Smart Mater. Struct., 5(4), 464-482. https://doi.org/10.1088/0964-1726/5/4/011
  52. Tian, Y., Wen, S. and Meng, Y. (2003), "Compressions of electrorheological fluids under different initial gap distances", Phys. Rev. E, 67(5), 051501. https://doi.org/10.1103/PhysRevE.67.051501
  53. Wang, X. and Gordaninejad, F. (2006), "Study of magnetorheological fluids at high shear rates", Rheologica Acta, 45, 899-908. https://doi.org/10.1007/s00397-005-0058-y
  54. Wang, J., Feng, N., Meng, G. and Hanh, E.J. (2006), "Vibration control of rotor by squeeze film damper with magnetorheological fluid", J. Intell. Mat. Syst. Str., 17(4), 353-357. https://doi.org/10.1177/1045389X06055623
  55. Wilson, C.M.D. and Abdullah, M.M. (2010), "Structural vibration reduction using self-tuning fuzzy control of magnetorheological dampers", Bull. Earthq. Eng., 8(4), 1037-1054. https://doi.org/10.1007/s10518-010-9177-7
  56. Winslow, W.M. (1949), "Induced fibrillation of suspensions", J. Appl. Phys., 20, 1137-1140. https://doi.org/10.1063/1.1698285
  57. Zapomel, J., Ferfecki, P. and Forte, P. (2012), "A computational investigation of the transient response of an unbalanced rigid rotor flexibly supported and damped by short magnetorheological squeeze film dampers", Smart Mater. Struct., 21(10), 105011. https://doi.org/10.1088/0964-1726/21/10/105011
  58. Zhu, C. (2007), "Controllability of a magnetorheological fluid squeeze film damper under sinusoidal magnetic field", Key Eng. Mater., 334-335, 1089-1092. https://doi.org/10.4028/www.scientific.net/KEM.334-335.1089

Cited by

  1. An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.053
  2. The performance of a smart ball-and-socket actuator applied to upper limb rehabilitation vol.29, pp.13, 2018, https://doi.org/10.1177/1045389X18780349
  3. Performance Evaluation of a Magnetorheological Fluid Damper Using Numerical and Theoretical Methods With Experimental Validation vol.6, pp.2296-8016, 2019, https://doi.org/10.3389/fmats.2019.00027
  4. Energy-Harvesting Adaptive Vibration Damping in High-Speed Train Suspension Using Electromagnetic Dampers vol.21, pp.14, 2015, https://doi.org/10.1142/s0219455421400022