DOI QR코드

DOI QR Code

International Comparison Study on the Articulation of the Science Curriculum: Focus on the Concept of Photosynthesis

과학과 교육과정의 연계성 국제 비교: 광합성 개념 중심으로

  • Received : 2015.07.29
  • Accepted : 2015.10.06
  • Published : 2015.10.31

Abstract

The Korean education curriculum is making efforts to improve education to foster competencies that the future society demands through the 2007 and 2009 revised curriculum. The revised curricula focus on enhanced articulation for the quality curriculum. In this study, the curriculum is analyzed for vertical and horizontal articulation. In addition, the study found a problem in Korea's curriculum through international comparison and sought improvement. Furthermore, the study compared internationally articulation of the concept of photosynthesis, of which the results are as follows. First, our science curriculum focuses on vertical articulation and has relatively neglected the problem of horizontal articulation. To compensate for this problem, curriculum design should introduce aspects of 'nature' and 'environment' and should consider the interests and concerns of students, as countries with high horizontal articulation do. Second, the actual education field has a problem with the a lack of continuity and sequence because of concentration of concept in a specific grade or simply repeating the concept across multiple grades. These results have led to alternative proposals that should arrange basis of concept configuration such as 'Big Idea' and should establish the adoption of 'systems' frequently appearing in the other curricula. Finally, there may be mentioned a lack of research on students' learning progression, which can be a common standard of horizontal and vertical articulation. Research on learning progression has been a trend overseas, but there exists no study to fit Korea's situation, so education fields need to conduct the appropriate research on learning progression as part of the commitment to high-quality curriculum.

우리나라 교육과정은 2007 개정 및 2009 개정 교육과정을 통해 미래사회가 요구하는 인재 양성을 목적으로 개선되고 있다. 이러한 목적을 달성하기 위한 개정 방향은 질 높은 교육과정을 위해 연계성 강화에 초점을 두었다. 교육과정에서 연계성은 미래 사회를 대비하기 위한 교육과정의 설계 기준으로 고려해야 할 요소이다. 연계성에는 계속성 및 계열성을 포함하는 종적 연계성과 통합성에 관한 횡적 연계성이 있다. 계속성과 계열성은 교과 내용이 반복되고 지속되는 위계를 의미하며, 통합성은 교과 간 내용의 수준, 범위, 관련성을 말한다. 이번 연구에서는 연계성을 분석하기 위한 기준을 세워 우리나라 과학과 교육과정의 연계성을 종적 및 횡적으로 분석하였다. 또한 과학교육의 성취 수준이 높고 체계적인 교육과정을 갖춘 국가(영국, 캐나다, 미국, 핀란드, 싱가포르, 대만)들을 대상으로 한 국제 비교를 통해 우리나라 교육과정의 문제점을 발견하고 개선 방안을 모색하였다. 그리고 생명과학 광합성 개념의 연계성을 국제 비교 함으로써 우리나라 과학과 교육과정에서 필요한 연계성 강화 근거를 도출하였다. 연구 결과를 정리하면 다음과 같다. 첫째, 우리나라 과학과 교육과정은 종적 연계성에 초점을 두고 있으며 상대적으로 횡적 연계성에 소홀하다는 문제점이 발견되었다. 이를 보완하기 위해 횡적 연계성이 높은 영국, 미국, 핀란드와 같이 '자연', '환경'과 같은 관점을 도입하고 학생의 흥미와 관심을 고려한다. 둘째, 실제 교육 현장에서 개념의 단순 반복 또는 개념의 특정 학년에 집중으로 계속성과 계열성이 결여되어 있었다. 그 대안으로 Big Idea와 같은 내용 체계나 개념 구성의 기준을 마련하고 캐나다, 미국, 싱가포르의 교육과정에서 자주 등장하는 '시스템'의 관점 도입을 제안한다. 마지막으로 횡적 및 종적 연계성의 공통 기준으로서 교육과정의 교육 내용이 학생들의 발달이나 수준에 적절한지 확인할 수 있는 근거가 부족하였다. 개념 위계와 교육 순서를 제시하는 근거로 최근 해외에서 학생의 학습발달과정 연구가 증가하고 있는 추세이다. 우리나라 교육 현장에 적용이 가능한 학습발달과정에 대한 연구가 필요하며 그에 따라 교육과정을 개발하여야 할 것이다.

Keywords

References

  1. Alonzo, A. C., & Steedle J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93(3), 389-421. https://doi.org/10.1002/sce.20303
  2. American Association for the Advancement of Science[AAAS]. (2001). Atlas of science literacy I. New York: Oxford University Press.
  3. American Association for the Advancement of Science[AAAS]. (2007). Atlas of science literacy II. New York: Oxford University Press.
  4. Bang, D., Park, E., Yoon H., Kim J., Lee Y., Park J., Song J., Dong, H., Shim, B., Lim, H., & Lee, H. (2013). The Design of Integrated Science Curriculum Framework Based on Big Ideas. Journal of the Korean Association for Science Education, 33(5), 1041-1054. https://doi.org/10.14697/jkase.2013.33.5.1041
  5. Ben-Zvi Assaraf, O., & Orpaz, T. (2010). The 'Life at the poles' study unit: Developing junior high school students' ability to recognize the relations between earth systems. Research in Science Education, 40(4), 525-549. https://doi.org/10.1007/s11165-009-9132-2
  6. Berland L.K., & McNeill, K.L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765-793. https://doi.org/10.1002/sce.20402
  7. Briggs, D. C., & Alonzo, A. C. (2012). The psychometric modeling of ordered multiplechoice item responses for diagnostic assessment with a learning progression. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 293-316). Rotterdam: Sense Publishers, The Netherlands.
  8. Bruner, J. S.(1960). The process of education. Cambridge, N.Y : Harvard University Press.
  9. Chung, Y., & Kang, K. (1998). Students' understanding of photosynthesis and an analysis of their misconceptions. Journal of the Korean Society of Biology Education, 26(1), 1-7.
  10. Duncan, R. G., Rogat, A. D., & Yarden, A. (2009). A learning progression for deepening students'understandings of modern genetics across the 5th-10th grades. Journal of Research in Science Teaching, 46(6), 655-674. https://doi.org/10.1002/tea.20312
  11. Duschl, R. A., Schweingruber, H. A., & Shouse, A. (2007). Taking science to school: Learning and teaching science in grades K-8(Eds.). Washington, DC.: National Academies Press.
  12. Furtak, E. M. (2012). Linking a learning progression for natural selection to teachers' enactment of formative assessment. Journal of Research in Science Teaching, 49(9), 1181-1210. https://doi.org/10.1002/tea.21054
  13. Gagne, R, M. (1970). The Conditions of Learning (2nd ed.). New York: Hott, Rinehart and Winston..
  14. Gunckel, K. L., Covitt, B. A., Salinas, I., & Anderson, C. W. (2012). A learning progression for water in socio-ecological systems. Journal of Research in Science Teaching, 49(7), 843-868. https://doi.org/10.1002/tea.21024
  15. Kim, J., Park, S., Choi, J., & Lee, H. (2013). International comparative studies on the sequence and integrity of elementary and secondary school curricula (Research report RRC 2013-3). Seoul: Korea Insritute for Curriculum and Evaluation.
  16. Korean Association for Science Education[KASE]. (2014). Present and future of science education in east asia: focusing on curriculum. Seoul: Seoul National University.
  17. Kwak, Y., Son, J., Kim, M., & Ku, J. (2014). Research on Ways to Improve Science Curriculum Focused on Key Competencies and Creative Fusion Education. Journal of the Korean Association for Science Education, 34(3), 321-330. https://doi.org/10.14697/jkase.2014.34.3.0321
  18. Lee, H., & Liu O. L. (2009). Assessing Learning Progression of Energy Concepts Across Middle School Grades: The Knowledge Integration Perspective. Science & Education, 94(4), 665-688. https://doi.org/10.1002/sce.20382
  19. Lee, J., Kim, Y., Paik, S., & Lee, K. (2010). An Analysis of Content-related Issues of Curriculum for the Improvement of Contents in Science Education. Journal of the Science Education, 34(1), 140-154. https://doi.org/10.21796/jse.2010.34.1.140
  20. Lee, S. (2013). A critical study on the structuralizing process of school-subject knowledge: The case of the 2009 revised science curriculum in Korea. The Journal of Curriculum Studies, 31(3), 173-199. https://doi.org/10.15708/kscs.31.3.201309.008
  21. Lee, Y., Yoon, H., Song, J., & Bang, D. (2014). Analysis of science educational contents of Singapore, Canada and US focused on the integrated concepts. Journal of the Korean Association for Science Education, 34(1), 21-32. https://doi.org/10.14697/jkase.2014.34.1.1.00021
  22. Marmaroti, P., & Galanopoulou, D. (2006). Pupils' understanding of photosynthesis: A questionnaire for the simultaneous assessment of all aspects. International Journal of Science Education, 28(4), 383-403. https://doi.org/10.1080/09500690500277805
  23. Ministry of Education and Human Resources Development[MEHRD]. (2007). A guide for science curriculum. Seoul; Ministry of Education and Human Resources evelopment.
  24. Ministry of Education and Science Technology[MEST]. (2009). Curriculum and operational practices from around the world(IV) Canada. Busan Metropolitan City Office of Education.
  25. Ministry of Education and Science Technology[MEST]. (2011). 2009 revised national science curriculum. Seoul, Korea: Author.
  26. Mohan, L., Chen, J., & Anderson, C. W. (2009). Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 46(6), 675-698. https://doi.org/10.1002/tea.20314
  27. National Curriculum Information Center[NCIC]. (n. d.). The Framework for the National Curriculum. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  28. National Curriculum Information Center[NCIC]. (n. d.). The National Curriculum in England Framework document for consultation. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  29. National Curriculum Information Center[NCIC]. (n. d.). Education Program 2010. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  30. National Curriculum Information Center[NCIC]. (n. d.). Ontario schools kindergarten to grade 12 Policy and Program Requirements. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  31. National Curriculum Information Center[NCIC]. (n. d.). A Framework for K-12 science education. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  32. National Curriculum Information Center[NCIC]. (n. d.). Next Generation Science Standards. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  33. National Curriculum Information Center[NCIC]. (n. d.). Core curriculum for pre-school education. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  34. National Curriculum Information Center[NCIC]. (n. d.). Core curricular upper secondary education. Retrieved July 28, 2015, from http://ncic.go.kr/mobile. wdi.map.do#
  35. National Curriculum Information Center[NCIC]. (n. d.). National Core Curriculum for Basic Education. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  36. National Curriculum Information Center[NCIC]. (n. d.). Amendments and additions to national core curriculum basic education. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  37. National Curriculum Information Center[NCIC]. (n. d.). Kindergarten Curriculum Framework. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  38. National Curriculum Information Center[NCIC]. (n. d.). MOE corporate brochure. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  39. National Curriculum Information Center[NCIC]. (n. d.). Primart school education booklet. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  40. National Curriculum Information Center[NCIC]. (n. d.). Secondary school education booklet. Retrieved July 28, 2015, from http://ncic.go.kr/mobile. wdi.map.do#
  41. National Curriculum Information Center[NCIC]. (n. d.). Taiwan secondary framework. Retrieved July 28, 2015, from http://ncic.go.kr/mobile.wdi.map.do#
  42. National Curriculum Information Center[NCIC]. (n. d.). Taiwan primary, lower secondary framework. Retrieved August 5, 2013, from http://ncic.go.kr/mobile.wdi.map.do#
  43. National Research Council[NRC]. (2001). Knowing what students know: The science and design of educational assessment. Washington, DC: The National Academies Press.
  44. National Research Council[NRC]. (2006). Systems for state science assessment. Washington, DC: The National Academies Press.
  45. National Research Council[NRC]. (2007). Taking science to school: Learning and teaching science in grades K-8. In R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.). Washington, DC: The National Academies Press.
  46. National Research Council[NRC]. (2012). A Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  47. National Research Council[NRC]. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academy Press.
  48. Odum, E. P. (1992) Great ideas in ecology for the 1990s. BioScienc, 42(7), 542-545. https://doi.org/10.2307/1311885
  49. Paik, N. (2006) Specification of presentation form of educational contents in subject curriculum. The Journal of Curriculum Studies, 24(2), 207-233.
  50. Plummer, J. D., & Krajcik, J. (2010). Building a learning progression for celestial motion: Elementary levels from an earth-based perspective. Journal of Research in Science Teaching, 47(7), 768-787. https://doi.org/10.1002/tea.20355
  51. Salovey, P., & Mayer, J. (1990). Imagination, Cognition and Personality, 9(3), 1989-1990.
  52. Shin, N., Koh, E., Choi, C., & Jeong, D. (2014). Using a Learning Progression to Characterize Korean Secondary Students' Knowledge and Submicroscopic Representations of the Particle Nature of Matter. Journal of the Korean Association for Science Education, 34(5), 437-447. https://doi.org/10.14697/jkase.2014.34.5.0437
  53. Smith, C. L., Wiser, M., Anderson, C. W., & Krajcki, J. (2011). Implication of research on children's learning for standards and assessment: A proposed learning progression for matter and the atomic molecular theory. Focus Article. Measurement: Interdisciplinary Research and Perspectives, 14, 1-98.
  54. Songer, N. B., Kelcey, B., & Gotwals, A.W. (2009). How and when does complex reasoning occur? Empirically driven development of a learning progressions focused on complex reasoning about biodiversity. Journal of Research in Science Teaching, 46(6), 610-631. https://doi.org/10.1002/tea.20313
  55. Stavy, R., Eisen, Y., & Yakobi, D. (1987). How students aged 13-15 understand photosynthesis. International Journal of Science Education, 9(1), 105-115. https://doi.org/10.1080/0950069870090111
  56. Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a Hypothetical Multi-Dimensional Learning Progression for the Nature of Matter. Journal of Research in Science Teaching. 47(6), 687-715. https://doi.org/10.1002/tea.20324
  57. Tyler, R. W.(1949). Basic principles of curriculum and instruction. Chicago: The University of Chicago Press.
  58. Westra, R. H. V. (2008). Learning and Teaching Ecosystem Behavior in Secondary Education. Unpublished Doctoral Paper. University of van Utrecht.
  59. Wiggins, G., & McTighe, J. (2005). Understanding by design(Expanded 2nd Ed.). Alexandria, VA: ASCD.
  60. Wilson, M. (2009). Measuring Progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46(6), 716-730. https://doi.org/10.1002/tea.20318

Cited by

  1. International Comparison Study on the Science Curriculum about Articulation of the ‘Light’ and ‘Electricity’ Concept vol.20, pp.4, 2015, https://doi.org/10.24231/rici.2016.20.4.322
  2. 과학과 교육과정의 핵심 개념 국제 비교 -미국, 캐나다, 호주, 영국을 중심으로- vol.37, pp.1, 2017, https://doi.org/10.14697/jkase.2017.37.1.0215
  3. 가정과 교육에서의 부모교육 - 중·고등학교 교과과정을 중심으로 - vol.29, pp.4, 2015, https://doi.org/10.19031/jkheea.2017.12.29.4.15
  4. 과학과 실과(기술·가정) 교육과정에 제시된 '시스템'과 '에너지' 핵심 개념의 연계성에 대한 국제 비교 연구 vol.42, pp.1, 2015, https://doi.org/10.21796/jse.2018.42.1.27
  5. Comparison of Conceptual Networks in Plant Structure and Function of Elementary School Science Textbook and Students’ Learning vol.46, pp.3, 2015, https://doi.org/10.15717/bioedu.2018.46.3.330