DOI QR코드

DOI QR Code

CANON 공정에서 운전조건에 따른 질소 제거효율 및 미생물군집 변화

Variation of Nitrogen Removal Efficiency and Microbial Communities Depending on Operating Conditions of a CANON Process

  • 조경민 (부산대학교 사회환경시스템공학부) ;
  • 박영현 (부산대학교 사회환경시스템공학부) ;
  • 조순자 (부산대학교 미생물학과) ;
  • 이태호 (부산대학교 사회환경시스템공학부)
  • Jo, Kyungmin (Department of civil and environmental engineering, Pusan National University) ;
  • Park, Younghyun (Department of civil and environmental engineering, Pusan National University) ;
  • Cho, Sunja (Department of microbiology, Pusan National University) ;
  • Lee, Taeho (Department of civil and environmental engineering, Pusan National University)
  • 투고 : 2015.04.03
  • 심사 : 2015.06.20
  • 발행 : 2015.06.30

초록

질소화합물은 부영양화 등 수질을 악화시키는 결과를 초래하므로 질소 제거는 수처리에 있어 가장 중요한 문제들 중 하나이다. 본 연구에서는 독립영양탈질 공정인 CANON (Completely Autotrophic Nitrogen-removal Over Nitrite)을 이용하여 암모니아성 질소 제거 효율을 평가하고, 미생물 군집 분석을 수행하였다. AOB (Ammonium Oxidizing Bacteria)와 ANAMMOX(ANaerobic AMMonium OXidation)균을 동시에 식종하고, $37^{\circ}C$에서 유입 암모니아성 질소농도 100 mg-N/L와 아질산성 질소 농도 100 mg-N/L 조건으로 운전한 결과, 성공적인 CANON 반응이 유도되었다. 유입수에서 아질산성 질소를 제외시키고 암모니아성 질소(100 mg-N/L)만을 공급하였을 때, DO농도 0.4 mg/L 이상에서는 CANON의 성능이 악화되었지만, DO농도를 0.3 mg/L으로 낮추자 71.3%의 총 질소제거효율을 나타내었다. 유입 암모니아성 질소 농도를 50 mg-N/L로 낮추었을 때, 질소 제거효율이 급격히 악화되었다. 그러나 유입농도를 다시 100 mg-N/L로 증가시키자 14일 만에 이전의 질소제거성능을 회복하였고, 이후 $76.1{\pm}4.9%$의 총 질소제거효율을 나타냈다. 온도를 상온($20{\pm}1^{\circ}C$) 조건으로 전환하자 초기에는 불안정한 CANON 반응이 일어났지만, 23일 이후에는 안정적인 총 질소제거효율($70.0{\pm}2.6$%)을 유지하였다. PCR-DGGE를 이용한 미생물군집 분석 결과, 식종원과 CANON의 미생물군집은 확연한 차이를 나타냈지만, CANON의 각 조건에 따른 미생물군집은 크게 다르지 않았다. 따라서 질소제거 성능의 악화는 미생물군집을 구성하는 미생물종의 변화에 기인하기 보다는 구성 미생물종들의 질소제거 활성의 저하에 기인하는 것으로 생각된다. 이러한 결과는 AOB와 ANAMMOX균을 식종하여 CANON 반응을 성공적으로 유도한다면, 이후 농도나 온도의 변화에도 안정적인 미생물군집을 유지할 수 있다는 것을 의미한다.

Nitrogen removal is one of the most important issues about wastewater treatment because nitrogen is a primary pollutant caused various problems such as eutrophication. We developed a CANON microbial community by using AOB and ANAMMOX bacteria as seeding sources. When 100 mg-N/L of influent ammonium was supplied, the DO above 0.4 mg/L showed a very low TN removal efficiency while the DO of 0.3 mg/L showed TN removal efficiency as high as 71.3%. When the influent ammonium concentration was reduced to 50 mg/L, TN removal efficiency drastically deceased. However, TN removal efficiency was recovered to above 70% after 14 day operation when the influent nitrogen concentration was changed again from 50 mg-N/L to 100 mg-N/L. According to the operating temperature from $37{\pm}1^{\circ}C$ to $20{\pm}1^{\circ}C$, TN removal efficiency also rapidly decreased but gradually increased again up to $70.0{\pm}2.6$%. The analysis of PCR-DGGE showed no substantial difference in microbial community structures under different operational conditions. This suggests that if CANON sludge is once successfully developed from a mixture of AOB and ANAMMOX bacteria, the microbial community can be stably maintained regardless of the changes in operational conditions.

키워드

참고문헌

  1. Kartal, B., Kuenen, J. G. and Van Loosdrecht, M. C. M., "Sewage treatment with anammox," Sci., 328(5979), 702-703(2010). https://doi.org/10.1126/science.1185941
  2. Strous, M., Kuenen, J. G. and Jetten, M. S. M., "Key physiology of anaerobic ammonium oxidation," Appl. Environ. Microbiol., 65, 3248-3250(1999).
  3. Chamchoi, N., Nitisoravut, S. and Schmidt, J. E., "Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification," Bioresour. Technol., 99(9), 3331-3336(2008). https://doi.org/10.1016/j.biortech.2007.08.029
  4. Kampschreur, M. J., van der Star, W. R. L., Wielders, H. A., Mulder, J. W., Jetten, M. S. M., van Loosdrecht, M. C. M., "Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment," Water Res., 42(3), 812-826(2008). https://doi.org/10.1016/j.watres.2007.08.022
  5. Dosta, J., Fernandez, I., Vazquez-Padin, J. R., Mosquera-Corral, A., Campos, J. L., Mata-Alvarez, J. and Mendez, R., "Short- and long-term effects of temperature on the Anammox process," J. Hazard. Mater., 154(1-3), 688-693(2008). https://doi.org/10.1016/j.jhazmat.2007.10.082
  6. Van Hulle, S. W. H., Vandeweyer, H. J. P., Meesschaert, B. D., Vanrolleghem, P. A., Dejans, P. and Dumoulin, A., "Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams," Chem. Eng. J., 162(1), 1-20(2010). https://doi.org/10.1016/j.cej.2010.05.037
  7. Denac, M., Uzman, S., Tanaka, H. and Dunn, I. J., "Modeling of experiments on biofilm penetration effects in a fluidized bed nitrification reactor," Biotechnol. Bioeng., 25, 1841-1861(1983). https://doi.org/10.1002/bit.260250713
  8. Hellinga, C., Schellen, A. A. J. C., Mulder, J. W., Van Loosdrechet, M. C. M. and Heijnen J. J., "The SHARON process: an innovative method for nitrogen removal from ammoniarich wastewater," Water Sci. Technol., 37, 135-142(1998).
  9. Surmacz-Gorska, J., Cichon, A. and Miksch, K., "Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification," Water Sci. Technol., 36(10), 73-78(1997). https://doi.org/10.1016/S0273-1223(97)00000-0
  10. Wang, S. Y., Gao, D. W., Peng, Y. Z., Wang, P. and Yang, Q., "Nitrification denitrification via nitrite for nitrogen removal from high nitrogen soybean wastewater with on-line fuzzy control," Water Sci. Technol., 49(5-6), 121-127(2004).
  11. Kuai, L. and Verstraete, W., "Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system," Appl. Environ. Microbiol., 64(11), 4500-4506(1998).
  12. Jetten, M. S. M., Schmid, M., Schmidt, I., Wubben, M., Van Dongen, U. and Abma, W., "Improved nitrogen removal by application of new nitrogen cycle bacteria," Rev. Environ. Sci. BioTechnol., 1, 51-63(2002). https://doi.org/10.1023/A:1015191724542
  13. Wouter, R. L. Van der Star, Abma, W. R., Blommers, D., Mulder, J.-W., Tokutomi, T., Strous, M., Picioreanu, C. and Mark, C. M. Van Loosdrecht., "Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam," Water Res., 44(18), 4149-4163(2007).
  14. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J., "16S Ribosomal DNA ampilfication for phylogenetic study," J. Bacteriol., 137(2), 697-703(1991).
  15. Nishimura, M., Kita-T., Kogure K., Ohwasa K. and Simidu U. A., "New method to detect viable bacteric in natural sea-water using 16S rRNA Oligonucleotide probe," J. Oceanog., 49, 51-56(2003).
  16. Kaksonen, A. H., Plumb, J. J., Franzmann, P. D. and Puhakka, J. A., "Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal and sulfate-containing wastewater," FEMS Microbiol. Ecol., 47, 279-289(2004). https://doi.org/10.1016/S0168-6496(03)00284-8
  17. Jung, J., Kang, S., Chung, Y. and Ahn, D., "Factors affecting the activity of anammox bacteria during start up in the continuous culture reactor," Water Sci. Technol., 55(1), 459-468(2007). https://doi.org/10.2166/wst.2007.023
  18. Vazquez-Padin, J. R., Pozo, M. J. Jarpa, M., Figueroaa, M., Franco, A., Mosquera-Corral, A., Campos, J. L. and Mendez R., "Treatment of anaerobic sludge digester effluents by the CANON process," J. Hazard. Mater., 166, 336-341(2009). https://doi.org/10.1016/j.jhazmat.2008.11.055
  19. Jin, R., Yang, G., Yu, J. and Zheng, P., "The inhibition of the Anammox process: A review," Chem. Eng. J., 197(15), 67-79(2012). https://doi.org/10.1016/j.cej.2012.05.014
  20. Anthonisen, A. C., Loehr, R. C., Prakasam, T. S. and Srinath, E. G., "Inhibition of nitrification by ammonia and nitrous acid," J. Water Pollut. Contro., 48, 835-852(1976).
  21. Chang, X., Li, D., Liang, Y., Yang, Z., Cui, S., Liu, T., Zeng, H. and Zhang, J., "Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature," J. Environ. Sci., 25(4), 688-697(2013). https://doi.org/10.1016/S1001-0742(12)60094-1
  22. Yamagishi, T., Takeuchi, M., Wakiya, Y. and Waki, M., "Distribution and characterization of anammox in a swine wastewater activated sludge facility," Water Sci. Technol., 67(10), 2330-2336(2013). https://doi.org/10.2166/wst.2013.102
  23. Bae, H., Chung, Y. C. and Jung, J. Y., "Microbial community structure and occurrence of diverse autotrophic ammonium oxidizing microorganisms in the anammox process," Water Sci. Technol., 61(11), 2723-2732(2010). https://doi.org/10.2166/wst.2010.075
  24. Qiao, J. T., Qiu, Y. L., Yuan, X. Z., Shi, X. S., Xu, X. H. and Guo, R. B., "Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw," Bioresour. Technol., 143, 512-518(2013). https://doi.org/10.1016/j.biortech.2013.06.014
  25. Wang, L., Zheng, P., Chen, T., Chen, J., Xing, Y., Ji, Q., Zhang, M. and Zhang, J., "Performance of autotrophic nitrogen removal in the granular sludge bed reactor," Bioresour. Technol., 123, 78-85(2012). https://doi.org/10.1016/j.biortech.2012.07.112
  26. Fukushima, T., Whang, L. M., Chiang, T. Y., Lin, Y. H., Chevalier, L. R., Chen, M. C. and Wu, Y. J., "Nitrifying bacterial community structures and their nitrification performance under sufficient and limited inorganic carbon conditions," Appl. Microbiol. Biotechnol., 97(14), 6513-6523(2013). https://doi.org/10.1007/s00253-012-4436-y
  27. Isaka, K., Kimura, Y., Osaka, T. and Tsuneda, S., "High-rate denitrification using polyethylene glycol gel carriers entrapping heterotrophic denitrifying bacteria," Water Res., 46(16), 4941-4948(2012). https://doi.org/10.1016/j.watres.2012.05.050
  28. Schwarz, J. I., Eckert, W. and Conrad, R., "Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel)," Syst. Appl. Microbiol., 30(3), 239-254(2007). https://doi.org/10.1016/j.syapm.2006.05.004

피인용 문헌

  1. Nitrogen removal characteristics of pigment wastewater using PAC-A/O process vol.32, pp.1, 2018, https://doi.org/10.11001/jksww.2018.32.1.019