DOI QR코드

DOI QR Code

MOFs for the Detection of High Explosives

MOF를 이용한 극미량의 고폭화약 탐지

  • LEE, Junwung (ReSEAT Team, Korea Institute of Science and Technology Information)
  • 이준웅 (한국과학기술정보연구원 ReSEAT 사업팀)
  • Received : 2014.10.28
  • Accepted : 2015.06.12
  • Published : 2015.08.05

Abstract

MOFs(Metal-Organic Frameworks) are new kinds of materials comprised of metal ions and functional organic ligands, and have large pores in its rigid structures which give the materials various functionalities, including gas absorption, separation, drug delivery etc. Recently photoluminescence properties of MOFs and possibilities of its application to high explosive sensing technologies are drawing attentions from scientists and engineers, because these methods are simple, cheap and easy to perform detection operations. In this article the author reviews the mechanisms of photoluminescence of MOFs, the detection methods of high explosives using MOFs and recent research progresses based on the papers published mainly during last 10 years.

Keywords

References

  1. Lee, J. W., "Synthesis and Applications of MOFs," Tech. Report, KISTI, 2014.
  2. Rocha, J. et al., Chem. Soc. Rev., 40, 926, 2011. https://doi.org/10.1039/C0CS00130A
  3. Hu, Z. et al., Chem. Soc. Rev., 43, 5815, 2014. https://doi.org/10.1039/C4CS00010B
  4. Toal, S. J. and Trogler, W. C., J. Mater. Chem., 16, 2871, 2006. https://doi.org/10.1039/b517953j
  5. Shustova, N. B. et al., J. Am. Chem. Soc., 133, 20126, 2011. https://doi.org/10.1021/ja209327q
  6. Dai, J.-C. et al., Chem. Commun., 12-13, 2002.
  7. Ni, J. et al., Dalton Trans., 41, 5280, 2012. https://doi.org/10.1039/c2dt12032a
  8. Ma, J.-X. et al., Chem. Eur. J., 19, 3590, 2013. https://doi.org/10.1002/chem.201204022
  9. Pramanik, S. et al., J. Am. Chem. Soc., 133, 4153, 2011. https://doi.org/10.1021/ja106851d
  10. Shustova N. B. et al., J. Am. Chem. Soc., 135, 13326, 2013. https://doi.org/10.1021/ja407778a
  11. Xu, H. et al., Chem. Commun., 48, 7377, 2012 https://doi.org/10.1039/c2cc32346j
  12. Li, Y. et al., Angew. Chem. Int. Ed., 52, 710, 2013. https://doi.org/10.1002/anie.201207610
  13. Lin, C.-K. et al., Inorg. Chem., 51, 9039, 2012. https://doi.org/10.1021/ic301189m
  14. Chen, B. et al., Angew. Chem. Int. Ed., 48, 500, 2009. https://doi.org/10.1002/anie.200805101
  15. Nagarkar, S. S. et al., Angew. Chem. Int. Ed., 52, 2881, 2013. https://doi.org/10.1002/anie.201208885
  16. Chaudhari, A. K. et al., Cryst. Growth Des., 13, 3716, 2013. https://doi.org/10.1021/cg400749m
  17. Hendon, C. H. et al., J. Am. Chem. Soc., 135, 10942, 2013. https://doi.org/10.1021/ja405350u
  18. Hu, Z. et al., Cryst. Growth Des., 13, 4204, 2013 https://doi.org/10.1021/cg4012185
  19. Odbadrakh, K. et al., J. Phys. Chem. C, 114, 3732, 2010. https://doi.org/10.1021/jp905459h
  20. Xiong, R. et al., Langmuir, 26, 5942, 2010. https://doi.org/10.1021/la9039013
  21. Lan, A. et al., Inorg. Chem., 48, 7165, 2009. https://doi.org/10.1021/ic9002115
  22. Lan, A. et al., Angew. Chem. Int. Ed. 48, 2334, 2009. https://doi.org/10.1002/anie.200804853
  23. Zhang, C. et al., Chem. Commun., 47, 2336, 2011. https://doi.org/10.1039/C0CC04836D
  24. Rao, D. et al., Chem. Commun., 47, 7698, 2011. https://doi.org/10.1039/c1cc11832c
  25. Banerjee, D. et al., Cryst. Growth Des., 9, 4922, 2009. https://doi.org/10.1021/cg900705c
  26. Abrahams, B. F. et al., Angew. Chem., Int. Ed., 49, 1087, 2010. https://doi.org/10.1002/anie.200906322
  27. Kim, T. K. et al., Inorg. Chem., 52, 589, 2013. https://doi.org/10.1021/ic3011458
  28. Li, R. et al., Small, 8, 225, 2012. https://doi.org/10.1002/smll.201101699
  29. Xu, H. et al., Chem. Commun., 47, 3153, 2011. https://doi.org/10.1039/c0cc05166g
  30. Xue, Y. S. et al., J. Mater. Chem. A, 1, 4525, 2013. https://doi.org/10.1039/c3ta01118f