DOI QR코드

DOI QR Code

원추형 유동층 연소기의 수력학적 특성 및 열전달에 항력 모델이 미치는 영향에 대한 연구

Effects of Drag Models on the Hydrodynamics and Heat Transfer in a Conical Fluidized Bed Combustor

  • 강승모 (부경대학교 소방공학과) ;
  • ;
  • 고동국 (전북대학교 대학원 기계공학과) ;
  • 박외철 (부경대학교 소방공학과) ;
  • 임익태 (전북대학교 기계설계공학부)
  • Kang, Seung Mo (Dept. of Fire-fighting Engineering, Pukyong Univ.) ;
  • Abdelmotalib, Hamada (Dept. of Mechanical Design Engineering, Chonbuk Nat'l Univ.) ;
  • Ko, Dong Guk (Dept. of Mechanical Engineering, Graduate School, Chonbuk Nat'l Univ.) ;
  • Park, Woe-Chul (Dept. of Fire-fighting Engineering, Pukyong Univ.) ;
  • Im, Ik-Tae (Dept. of Mechanical Design Engineering, Chonbuk Nat'l Univ.)
  • 투고 : 2015.04.06
  • 심사 : 2015.09.08
  • 발행 : 2015.11.01

초록

본 연구에서는 서로 다른 항력 모델이 원추형 유동층 연소기 내의 수력학적 특성과 열전달 현상에 미치는 영향에 대해, 입자상 유동에 대한 분자운동론을 적용한 오일러-오일러 모델을 사용하여 수치 해석적으로 연구하였다. Gidaspow 항력 모델과 Syamlal-O'Brien 항력 모델에 대해 유입 공기의 속도와 입자의 크기를 변화시키면서 연소기 내의 압력강하나 베드 팽창률 및 벽과 베드 사이의 열전달 계수의 변화를 조사하였다. 그 결과 베드의 팽창률은 속도가 증가함에 따라 커졌으며 압력강하는 속도의 증가에 따라 감소하였다. 벽과 베드 사이의 열전달 계수는 유입 속도가 증가하면 증가하고 입자의 크기가 증가하면 감소하는 것으로 나타났다. 베드의 팽창률이나 압력 강하와 같은 수력학적 특성은 항력 모델에 큰 영향을 받지 않았으나 열전달 계수는 항력 모델에 따라 차이가 나타났다.

In this study, wall to bed heat transfer and hydrodynamic characteristics in a conical fluidized bed combustor was investigated using computational fluid dynamics method. A two-fluid Eulerian-Eulerian model was used with applying the kinetic theory for granular flow(KTGF). The effects of the two drag models, Gidaspow and the Syamlal-O'Brien model, different inlet velocities($1.4U_{mf}{\sim}4U_{mf}$) and different particle sizes on the hydrodynamics and heat transfer were studied. The results showed that the hydrodynamic characteristics such as bed expansion ratio and pressure drop were not affected significantly by the drag models. But the heat transfer coefficient was different for the two drag models, especially at lower gas inlet velocities and small particle sizes.

키워드

참고문헌

  1. Kendry, M. P., 2008, "Energy Production from Biomass (part 2), Conversion Technologies," Bioresource Technology Vol. 83, pp. 47-54.
  2. Wang, L., Weller, L. C., Jones, D. D. and Hanna, A. M., 2008, "Contemporary Issues in Thermal Gasification of Biomass and Its Application to Electricity and Fuel Production," Biomass and Bioenergy, Vol. 32, pp. 573-581. https://doi.org/10.1016/j.biombioe.2007.12.007
  3. Kaewklum, R., Kuprianov, V. I. and Douglas L. P., 2009, "Hydrodynamics of Air-Sand Flow in a Conical Swirling Fluidized Bed: A Comparative Study Between Tangential and Axial Air Entries," Energy Conversion and Management, Vol. 50, pp. 2999-3006. https://doi.org/10.1016/j.enconman.2009.07.019
  4. Patil, R. S. and Pandey, P. M., 2011, "Parametric Studies and Effect of Scale-Up on Wall to Bed Heat Transfer Characteristics of Circulating Fluidized Bed Risers," Experimental Thermal and Fluid Science, Vol. 35, pp. 485-494. https://doi.org/10.1016/j.expthermflusci.2010.11.012
  5. Gupta, A. V. and Nag, P. K., 2002, "Bed to Wall Heat Transfer Behavior in a Pressurized Circulating Fluidized Bed," International Journal of Heat and Mass Transfer, Vol. 45, pp. 3429-3436. https://doi.org/10.1016/S0017-9310(01)00365-9
  6. Kalita, P., Mahant, P. and Saha, K. U., 2013, "Some Studies on Wall to Bed Heat Transfer in a Pressurized Circulating Fluidized Bed Unit," Procedia Engineering, Vol. 56, pp. 16-172.
  7. Armstrong, L. M., Gu, S. and Luo, K. H., 2010, "Study of Wall to Bed Heat Transfer in a Bubbling Fluidized Bed Using the Kinetic Theory of Granular Flow," International Journal of Heat and Mass Transfer, Vol. 53, pp. 4949-4959. https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.047
  8. Kuipers, J. A. M., Prins, W. and Swaaij, W. P., 1997, "Numerical, Calculation of Wall to Bed Heat-Transfer Coefficients in Gas Fluidized Beds," AIChE Journal, Vol. 38, pp. 1079-1091.
  9. Yusuf, R., Melaaen, M. C. and Mathiesen, V., 2005, "Convective Heat and Mass Transfer Modeling in Gas Fluidized Beds," Chemical Engineering Technology, Vol. 28, pp. 13-24. https://doi.org/10.1002/ceat.200407014
  10. Yusuf, R., Halvorsen, B. and Melaaen, C. M., 2012, "An Experimental and Computational Study of Wall to Bed Heat Transfer in a Bubbling Gas-Solid Fluidized Bed," International Journal of Multiphase Flow, Vol. 42, pp. 9-23. https://doi.org/10.1016/j.ijmultiphaseflow.2012.01.003
  11. Hou, Q. F., Zhou, Z. Y. and Yu, A. B., 2009, "Computational Study of Heat Transfer in Bubbling Fluidized Beds with Geldert a Powder," Seventh International Conference on CFD in the Minerals and Process Industries, Australia 9-11.
  12. Almuttahar, A. and Taghipour, F., 2008, "Computational Fluid Dynamics of a Circulating Fluidized Bed Under Various Fluidization Conditions," Chemical Engineering Science, Vol. 63, pp. 1696-1709. https://doi.org/10.1016/j.ces.2007.11.020
  13. Kaewklum, R. and Kuprianov, V. I., 2008, "Theoretical and Experimental Study on Hydrodynamic Characteristics of Fluidization in Air-Sand Conical Beds," Chemical Engineering Science, Vol. 63, pp.1471-1479. https://doi.org/10.1016/j.ces.2007.11.033
  14. Sirisomboon, K., Kuprianov, V. I. and Arromdee, P., 2010, "Effects of Design Features on Combustion Efficiency and Emission Performance of a Biomass-Fuelled Fluidized-Bed Combustor," Chemical Engineering and Processing, Vol. 49, pp. 270-277. https://doi.org/10.1016/j.cep.2010.02.003
  15. Wiens, J. and Pugsley, T., 2006, "Tomographic Imaging of a Conical Fluidized Bed of Dry Pharmaceutical Granule," Powder Technology, Vol. 169, pp. 49-59. https://doi.org/10.1016/j.powtec.2006.07.022
  16. Patankar, S., 1980, "Numerical Heat Transfer and Fluid Flow," Hemisphere, Washington, D.C.
  17. Fluent is a product name by Ansys, Ansys Inc., Southpointe 275 Technology Drive, Canonsburg, PA 15317, USA.
  18. 2003, Fluent 6.1 User's Guide Volume 3, Chap. 22, Fluent Inc., Centerra Resource Park, 10 Cavendish Court, Lebanon, NH 03766.
  19. Patil, D. J., Smit, J., Annaland, M. and Kuipers, J. A. M., 2006, "Wall to Bed Heat Transfer in Gas-Solid Bubbling Fluidized Beds," AIChE Journal, Vol. 52, pp. 58-74. https://doi.org/10.1002/aic.10590
  20. Lun, C., Savage, S., Jeffrey, D. and Chepurniy, N., 1984, "Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field," Journal of Fluid Mechanics, Vol.140, pp. 223-256. https://doi.org/10.1017/S0022112084000586
  21. Syamlal, M. and Gidaspow, D., 1985, "Hydrodynamics of Fluidization: Prediction of Wall-To-Bed Heat Transfer Coefficients," AIChE Journal, Vol. 31, pp. 127-135. https://doi.org/10.1002/aic.690310115
  22. Gunn, D. J., 1978, "Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds," International Journal of Heat and Mass Transfer, Vol. 21, pp. 467-476. https://doi.org/10.1016/0017-9310(78)90080-7
  23. Singh, R. K., Suryanarayana, A. and Roy, G. K., 1999, "Prediction of Bed Expansion Ratio for Gas-Solid Fluidization in Cylindrical and Non-Cylindrical Beds," Chemical Engineering Journal, Vol. 79, pp. 51-55.
  24. Im, I.-T., Abdelmotalib, H. M., Kim, M. S., Park, C. W., "A Study on Wall to Bed Heat Transfer in a Conical Fluidized Bed Combustor," ICHMT International Symposium on Advances in Computational Heat Transfer, May 25-29, 2015, Rutgers University, New Brunswick, NJ, USA, Book of Abstracts, Edited by Jaluria, Y. and Guo, Z., p. 295.