DOI QR코드

DOI QR Code

MECHANICAL PROPERTIES OF TWO-WAY DIFFERENT CONFIGURATIONS OF PRESTRESSED CONCRETE MEMBERS SUBJECTED TO AXIAL LOADING

  • ZHANG, CHAOBI (School of Civil and Hydraulic Engineering, Dalian University of Technology) ;
  • CHEN, JIANYUN (School of Civil and Hydraulic Engineering, Dalian University of Technology) ;
  • XU, QIANG (School of Civil and Hydraulic Engineering, Dalian University of Technology) ;
  • LI, JING (School of Civil and Hydraulic Engineering, Dalian University of Technology)
  • Received : 2014.12.29
  • Accepted : 2015.05.15
  • Published : 2015.10.25

Abstract

In order to analyze the mechanical properties of two-way different configurations of prestressed concrete members subjected to axial loading, a finite element model based on the nuclear power plant containments is demonstrated. This model takes into account the influences of different principal stress directions, the uniaxial or biaxial loading, and biaxial loading ratio. The displacement-controlled load is applied to obtain the stress estrain response. The simulated results indicate that the differences of principal stress axes have great effects on the stress-strain response under uniaxial loading. When the specimens are subjected to biaxial loading, the change trend of stress with the increase of loading ratio is obviously different along different layout directions. In addition, correlation experiments and finite element analyses were conducted to verify the validity and reliability of the analysis in this study.

Keywords

Acknowledgement

Supported by : National Natural Science of China

References

  1. H. Lee, Shell finite element of reinforced concrete for internal pressure analysis of nuclear containment building, Nucl. Eng. Des. 241 (2011) 515-525. https://doi.org/10.1016/j.nucengdes.2010.11.008
  2. H. Kwak, J. Kim, Numerical models for prestressing tendons in containment structures, Nucl. Eng. Des 236 (2006) 1061-1080. https://doi.org/10.1016/j.nucengdes.2005.10.010
  3. H. Toshihiko, G. Masashi, H. Toshiyasu, K. Minoru, K. Takahiro, M. Tsutomu, A. Hiroshi, T. Katsuki, A. Hiroshi, Seismic proof test of a reinforced concrete containment vessel (RCCV) Part 1: test model and pressure test, Nucl. Eng. Des 235 (2005) 1335-1348. https://doi.org/10.1016/j.nucengdes.2005.01.002
  4. C. Freidin, A. Krichevsky, Prestressed concrete containment of nuclear power station with PWR, Nucl. Eng. Des 214 (2002) 173-182. https://doi.org/10.1016/S0029-5493(02)00032-8
  5. M. Somayehsadat, P. Anna, P. Mahesh, Nuclear radiation effect on the behavior of reinforced concrete elements, Nucl. Eng. Des 269 (2014) 57-65. https://doi.org/10.1016/j.nucengdes.2013.08.007
  6. S. Lee, Y. Song, S. Han, Biaxial behavior of plain concrete of nuclear containment building, Nucl. Eng. Des 227 (2004) 143-153. https://doi.org/10.1016/j.nucengdes.2003.09.001
  7. A. Barbat, M. Cervera, A. Hanganu, C. Cirauqui, E. Onate, Failure pressure evaluation of the containment building of a large dry nuclear power plant, Nucl. Eng. Des 180 (1998) 251-270. https://doi.org/10.1016/S0029-5493(97)00329-4
  8. H. Hu, Y. Lin, Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure, Int. J. Pres. Ves. Pip 83 (2006) 161-167. https://doi.org/10.1016/j.ijpvp.2006.02.030
  9. M. Manjuprasad, S. Gopalakrishnan, A. Rao, Non-linear dynamic response of a reinforced concrete secondary containment shell subjected to seismic load, Eng. Struct 23 (2001) 397-406. https://doi.org/10.1016/S0141-0296(00)00070-5
  10. A. Williams, Tests on Large Reinforced Concrete Elements Subjected to Direct Tension, Cement and Concrete Association, University of California, 1986.
  11. R. Gilbert, R. Warner, Tension stiffening in reinforcedconcrete slabs, J. Str. Div-ASCE 104 (1978) 1885-1900.
  12. K. Fields, P. Bischoff, Tension stiffening and cracking of highstrength reinforced concrete tension members, ACI. Struct. J. 101 (2004) 447-456.
  13. E. Wollrab, S. Kulkarni, C. Ouyang, S. Shah, Response of reinforced concrete panels under uniaxial tension, ACI. Struct. J. 93 (1996) 648-657.
  14. N. Dawood, H. Marzouk, Experimental evaluation of the tension stiffening behavior of HSC thick panels, Eng. Struct. 33 (2011) 1687-1697. https://doi.org/10.1016/j.engstruct.2011.02.006
  15. N. Dawood, H. Marzouk, Cracking and tension stiffening of high-strength concrete panels, ACI. Struct. J. 109 (2012) 21-30.
  16. N. Dawood, H. Marzouk, Reinforced concrete panels subjected to uniaxial and biaxial tension, J. Adv. Concr. Technol 8 (2010) 59-73. https://doi.org/10.3151/jact.8.59
  17. S. Rizkalla, L. Hwang, Crack prediction for members in uniaxial tension, ACI. Struct. J. 81 (1984) 572-579.
  18. S. Rizkalla, L. Hwang, M. Elshahawi, Transverse reinforcement effect on cracking behavior of RC members, Can. J. Civil. Eng. 10 (1983) 566-581. https://doi.org/10.1139/l83-087
  19. L. Elfgren, K. Noghabai, RILEM TC 147-FMB. Tension of Reinforced Concrete Prisms. Division of Structural Engineering, Lulea University of Technology, Sweden, 2001.
  20. S. Simmonds, S. Rizkalla, J. MacGregor, Tests of Wall Segments from Reactor Containments, Department of Civil Engineering, University of Alberta, Canada, 1979.
  21. K. Maekawa, H. Okamura, A. Pimanmas, Non-linear Mechanics of Reinforced Concrete, CRC Press, 2003.
  22. C. Choi, S. Cheung, Tension stiffening model for planar reinforced concrete members, Comput. Struct. 59 (1996) 179-190. https://doi.org/10.1016/0045-7949(95)00146-8
  23. A. Belarbi, T. Hsu, Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete, ACI. Struct. J. 91 (1994) 465-474.
  24. T. Hsu, L. Zhang, Tension stiffening in reinforced concrete membrane elements, ACI. Struct. J. 93 (1996) 108-115.
  25. H. Noh, Ultimate strength of large scale reinforced concrete thin shell structures, Thin. Wall. Struct. 43 (2005) 1418-1443. https://doi.org/10.1016/j.tws.2005.04.004
  26. M. Christiansen, M. Nielsen, Plane stress tension stiffening effects in reinforced concrete, Mag. Concrete. Res. 53 (2001) 357-365. https://doi.org/10.1680/macr.2001.53.6.357
  27. Y. Sato, F. Vecchio, Tension stiffening and crack formation in reinforced concrete members with fiber-reinforced polymer sheets, J. Struct. Eng-ASCE 129 (2003) 717-724. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(717)
  28. A. Gupta, S. Maestrini, Tension-stiffness model for reinforced-concrete bars, J. Struct. Eng-ASCE 116 (1990) 769-790. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(769)
  29. B. Massicotte, A. Elwi, J. MacGregor, Tension-stiffening model for planar reinforced concrete members, J. Struct. Eng-ASCE 116 (1990) 3039-3058. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(3039)
  30. J. Cho, N. Kim, N. Cho, Y. Choun, Stress-strain relationship of reinforced concrete subjected to biaxial tension, ACI. Struct. J. 101 (2004) 202-208.
  31. J. Cho, N. Kim, N. Cho, I. Choi, Cracking behavior of reinforced concrete panel subjected to biaxial tension, ACI. Struct. J. 101 (2004) 76-84.
  32. ACI Committee 224, Cracking of Concrete Members in Direct Tension, ACI 224.2R-92, American Concrete Institute, Detroit, 1992.
  33. Comite Euro-International Du Beton, CEB-FIP Model Code 1990, Comite Euro-Internationale du Beton et Federation Internationale de la Procontrainte, Lausanne, Switzerland, 1990.
  34. J. Mazars, G. Pijaudiercabot, Continuum damage theory application to concrete, J. Eng. Mech-ASCE 115 (1989) 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
  35. J. Lubliner, J. Oliver, S. Oller, E. Onate, A plastic-damage model for concrete, Int. J. Solids Struct. 25 (1989) 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  36. J.H. Lee, G. Fenves, Plastic-damage model for cyclic loading of concrete structures, J. Eng. Mech-ASCE 124 (1998) 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  37. D. Krajcinovic, Continuum damage mechanics, Appl. Mech. Rev. 37 (1984) 1-6.
  38. A. Dragon, Z. Mroz, A continuum model for plastic-brittle behaviour of rock and concrete, Int. J. Eng. Sci. 17 (1979) 121-137. https://doi.org/10.1016/0020-7225(79)90058-2
  39. S. Murakami, N. Ohno, A Continuum Theory of Creep and Creep Damage, Creep in Structures, Springer, 1981.
  40. M.Wang, J. Chen, S. Fan, S. Lv, Experimental study on high gravity damstrengthened with reinforcement for seismic resistanceonshaking table, Struct. Eng. Mech. 51 (2014) 663-683. https://doi.org/10.12989/sem.2014.51.4.663
  41. J. Chen, M. Wang, S. Fan, Experimental investigation of small-scaled model for powerhouse dam section on shaking table, Struct. Control Hlth 20 (2013) 740-752. https://doi.org/10.1002/stc.1489
  42. J. Zhang, J. Yang, Z. Liang, Y. Zhang, 3D numerical research on failure process of reinforced concrete specimen under uniaxial tension, J. Liaoning Tech. Univ. 26 (2007) 700-702.
  43. J. Fu, X. Du, J. Zhang, Mechanical properties of large-size high-strength reinforced concrete columns under axial compression, Building Struct. 43 (2013) 77-81.

Cited by

  1. Multi-longitudinal mode fiber laser digital vibration-sensing system based on a multi-carrier modulation/demodulation technique vol.28, pp.21, 2020, https://doi.org/10.1364/oe.405439