DOI QR코드

DOI QR Code

INVESTIGATION OF ACTIVATED CARBON ADSORBENT ELECTRODE FOR ELECTROSORPTION-BASED URANIUM EXTRACTION FROM SEAWATER

  • ISMAIL, AZNAN FAZLI (Department of Nuclear and Quantum Engineering (NQe), 291 Korea Advanced Institute of Science and Technology (KAIST)) ;
  • YIM, MAN-SUNG (Department of Nuclear and Quantum Engineering (NQe), 291 Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2014.09.03
  • Accepted : 2015.02.27
  • Published : 2015.10.25

Abstract

To support the use of nuclear power as a sustainable electric energy generating technology, long-term supply of uranium is very important. The objective of this research is to investigate the use of new adsorbent material for cost effective uranium extraction from seawater. An activated carbon-based adsorbent material is developed and tested through an electrosorption technique in this research. Adsorption of uranium from seawater by activated carbon electrodes was investigated through electrosorption experiments up to 300 minutes by changing positive potentials from +0.2V to +0.8V (vs. Ag/AgCl). Uranium adsorption by the activated carbon electrode developed in this research reached up to 3.4 g-U/kg-adsorbent material, which is comparable with the performance of amidoxime-based adsorbent materials. Electrosorption of uranium ions from seawater was found to be most favorable at +0.4V (vs. Ag/AgCl). The cost of chemicals and materials in the present research was compared with that of the amidoxime-based approach as part of the engineering feasibility examination.

Keywords

Acknowledgement

Supported by : KAIST

References

  1. OECD-NEA-IAEA, Uranium 2011: Resources, Production and Demand, Paris, 2011, pp. 9-10.
  2. E. Schneider, H. Linder, Unconventional Uranium Resources and Production Costs, ANS Annual Meeting, June 15-19, 2014.
  3. M. Tamada [Internet]. Current Status of Technology for Collection of Uranium from Seawater, Erice Seminar, 2009 [cited 2012 Aug 29]. Available from: http://wiki.ornl.gov/sites/nfrw/Shared%20Documents/Uranium%20Extraction%20Seawater/2009_Tamada%5B1%5D.pdf.
  4. K. Saito, T. Miyauchi, Chemical forms of uranium in artificial seawater, Nucl. Sci. and Technol. 19 (1982) 145-150. https://doi.org/10.1080/18811248.1982.9734126
  5. P.H. Gleich, Water in Crisis: a Guide to the World's Fresh Water Resources, Oxford University Press, 1993, pp. 142-143.
  6. H. Sodaye, S. Nisan, C. Poletiko, S. Prabhakar, P.K. Tewari, Extraction of uranium from the concentrated brine rejected by integrated nuclear desalination plants, Desalination 235 (2009) 9-32. https://doi.org/10.1016/j.desal.2008.02.005
  7. R.V. Davies, J. Kennedy, R.W. McIlroy, R. Spence, Extraction of uranium from seawater, Nature 4950 (1964) 1110-1115.
  8. F. Vernon, T. Shah, The extraction of uranium from seawater by poly(amidoxime)/poly(hydroxamic acid) resins and fibre, React. Polym., Ion Exch., Sorbents 1 (1983) 301-308. https://doi.org/10.1016/0167-6989(83)90033-8
  9. A. Zhang, G. Uchiyama, T. Asakura, Dynamic-state adsorption and elution behaviour of uranium (VI) ions from seawater by a fibrous and porous adsorbent containing amidoxime chelating functional groups, Adsorpt. Sci. Technol. 21 (2003) 761-774. https://doi.org/10.1260/026361703773581812
  10. S.H. Choi, M.S. Choi, Y.T. Park, K.P. Lee, H.D. Kang, Adsorption of uranium ions by resins with amidoxime and amidoxime/carboxyl group prepared by radiation-induced polymerization, Radiat. Phys. Chem. 67 (2003) 387-390. https://doi.org/10.1016/S0969-806X(03)00072-0
  11. N. Seko, M. Tamada, F. Yoshii, Current status of adsorbent for metal ions with radiation grafting and crosslinking techniques, Nucl. Instrum. Methods Phys. Res., Sect. A: Beam Interact Mater Atoms 236 (2005) 21-29. https://doi.org/10.1016/j.nimb.2005.03.244
  12. T.L. Prasad, A.K. Saxena, P.K. Tewari, D. Sathiyamoorthy, An engineering scale study on radiation grafting of polymeric adsorbents for recovery of heavy metal ions from seawater, Nucl. Eng. Technol. 41 (2009) 1101-1108. https://doi.org/10.5516/NET.2009.41.8.1101
  13. R. Villalobos-Rodriguez, M.E. Montero-Cabreraa, H.E. Esparza-Ponce, E.F. Herrera-Peraza, M.L. Ballinas-Casarrubias, Uranium removal from water using cellulose triacetate membranes added with activated carbon, Appl. Radiat. Isot. 70 (2012) 872-881. https://doi.org/10.1016/j.apradiso.2012.01.017
  14. H. Yamashita, Y. Ozawa, F. Nakajima, T.Murata, The collection of uranium from seawater with hydrous metal oxide. IV. Physical properties and uranium adsorption of hydrous titanium(IV) oxide, Bull. Chem. Soc. Jpn. 53 (1980) 3050-3053. https://doi.org/10.1246/bcsj.53.3050
  15. G.D. Suh, J.H. Kim, K.S. Hea, Adsorption of uranium by hydrous titanium(IV) oxides, Korean Chem. Eng. Res. 28 (1990) 303-312.
  16. S. Nakamura, S.Mori, H. Yoshimuta, Y. Ito, M. Kanno, Uranium adsorption properties of hydrous titanium oxide granulated with polyacrylonitrile, Sep. Sci. Technol. 23 (1988) 731-743. https://doi.org/10.1080/01496398808057662
  17. M. Wazne, G.P. Korfiatis, X. Meng, Removal of Uranium from Water by Nanocrystalline Titanium Dioxide, Protection and Restoration of the Environment VII, Mykonos, Greece, 2004, pp. 1-9.
  18. H. Yamashita, K. Fujita, F. Nakajima, Y. Ozawa, T. Murata, Extraction of uranium from seawater using magnetic adsorbents, Sep. Sci. Technol. 16 (1981) 987-998. https://doi.org/10.1080/01496398108057595
  19. Y. Sun, S. Yang, G. Sheng, Z. Guo, X. Tan, J. Xu, X. Wang, Comparison of U(VI) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina, Sep. Purif. Technol. 83 (2012) 196-203.
  20. E.A. Heide, K. Wagener, M. Paschke, M. Wald, Extraction of uranium from sea water by cultured algae, Naturwissenschaften 60 (1973) 431.
  21. A. Nakajima, T. Sakaguchi, S. Honma, M. Aoyama, A. Kasai, Recovery and removal of uranium by conifer barks, Resour. Environ. Biotechnol. 2 (1999) 297-310.
  22. K. Chauhan, G.S. Chauhan, Separation of uranyl ions on starch-based functional hydrogels: mechanism and kinetics, Sep. Sci. Technol. 46 (2011) 172-178.
  23. J. Kim, M.Y. Kim, H.S. Kim, S.S. Hah, Binding of uranyl ion by a DNA aptamer attached to a solid support, Bioorg. Med. Chem. Lett. 21 (2011) 4020-4022. https://doi.org/10.1016/j.bmcl.2011.04.139
  24. J. Kim, H. Lee, J.W. Yeon, Y. Jung, J. Kim, Removal of uranium (VI) from aqueous solutions by nanoporous carbon and its chelating polymer composite, J. Radioanal. Nucl. Chem. 286 (2010) 129-133. https://doi.org/10.1007/s10967-010-0624-3
  25. Y. Xu, J.W. Zondlo, H.O. Finklea, A. Brennsteiner, Electrosorption of uranium on carbon fibers as a means of environmental remediation, Fuel Process. Technol. 68 (2000) 189-208. https://doi.org/10.1016/S0378-3820(00)00114-4
  26. L.S. Shannon, Master Degree Thesis: Removal of Uranium from Aqueous Wastes Using Electrically Charged Carbon Nanofibers, United States, West Virginia, 2000.
  27. J. Gorka, R.T. Mayes, L. Baggetto, G.M. Veith, S. Dai, Sonochemical functionalization of mesoporous carbon for uranium extraction from seawater, J. Mater. Chem. A 1 (2013) 3016-3026. https://doi.org/10.1039/c2ta01008a
  28. A. Mellah, S. Chegrouche, M. Barkat, The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations, Colloid Interface Sci. 296 (2006) 434-441. https://doi.org/10.1016/j.jcis.2005.09.045
  29. M. Caccin, F. Giacobbo, M. Da Ros, L. Besozzi, M. Mariani, Adsorption of uranium, cesium and strontium onto coconut shell activated carbon, J. Radioanal. Nucl. Chem. 279 (2013) 9-18.
  30. M. Tamada, N. Seko, N. Kasai, T. Shimizu, Cost estimation of uranium recovery from seawater with system of braid type adsorbent, Trans. Atomic. Energ. Soc. Jpn. 5 (2006) 358-363. https://doi.org/10.3327/taesj2002.5.358
  31. C.D. Liang, S. Dai, Synthesis of mesoporous carbon materials via enhanced hydrogenbonding interaction, J. Am. Chem. Soc. 128 (2006) 5316-5317. https://doi.org/10.1021/ja060242k
  32. C.H. Jung, H.Y. Lee, J.K. Moon, H.J. Won, Y.G. Shul, Electrosorption of uranium ions on activated carbon fibers, J. Radioanal. Nucl. Chem. 287 (2011) 833-839. https://doi.org/10.1007/s10967-010-0848-2
  33. G. Tian, J. Geng, Y. Jin, C. Wang, S. Li, Z. Chen, Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5, J. Hazard. Mater. 190 (2011) 442-450. https://doi.org/10.1016/j.jhazmat.2011.03.066
  34. Y. Zhao, C. Liu, M. Feng, Z. Chen, S. Li, G. Tian, L. Wang, J. Huang, S. Li, Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon, J. Hazard. Mater. 176 (2010) 119-124. https://doi.org/10.1016/j.jhazmat.2009.11.005
  35. A. Zhang, T. Asakura, G. Uchiyama, The adsorption mechanism of uranium (VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group, React. Funct. Polym. 57 (2003) 67-76. https://doi.org/10.1016/j.reactfunctpolym.2003.07.005
  36. J. Kim, C. Tsouris, R.T. Mayes, Y. Oyola, T. Saito, C.J. Janke, S. Dai, E. Schneider, D. Sachde, Recovery of uranium from seawater: a review of current status and future research needs, Sep. Sci. Technol. 48 (2012) 367-387.
  37. C.H. Hou, P. Taboada-Serrano, S. Yiacoumi, C. Tsouris, Electrosorption selectivity of Ions from mixtures of electrolytes inside nanopores, J. Chem. Phys. 129 (2008) 224703. https://doi.org/10.1063/1.3033562
  38. J. Koresh, A. Soffer, Stereoselectivity in ion electroadsorption and in double-layer charging of molecular-sieving carbon electrodes, J. Electroanal. Chem. 147 (1983) 223-234. https://doi.org/10.1016/S0022-0728(83)80068-0
  39. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, Wiley, New York, 1988.
  40. G. Meinrath, Aquatic chemistry of uranium, Freib. On-line Geosci. 1 (1998).
  41. J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, Capacitive deionization of NaCI and $NaNO_3$ solutions with carbon aerogel electrodes, J. Electrochem. Soc. 143 (1996) 159-169. https://doi.org/10.1149/1.1836402
  42. E. Schneider, D. Sachde, The cost of recovering uranium from seawater by a braided polymer adsorbent system, Sci. Glob. Secur. 21 (2013) 134-163. https://doi.org/10.1080/08929882.2013.798993

Cited by

  1. Can Renewable Energy Replace Nuclear Power in Korea? An Economic Valuation Analysis vol.48, pp.2, 2015, https://doi.org/10.1016/j.net.2015.12.012
  2. Synthesis of Transparent Amorphous Carbon Thin Films from Cellulose Powder in Rice Straw vol.42, pp.1, 2017, https://doi.org/10.1007/s13369-016-2273-5
  3. The Cognitive and Economic Value of a Nuclear Power Plant in Korea vol.49, pp.3, 2017, https://doi.org/10.1016/j.net.2016.10.007
  4. Materials for the Recovery of Uranium from Seawater vol.117, pp.23, 2015, https://doi.org/10.1021/acs.chemrev.7b00355
  5. A Novel Process for Extraction of Uranium from Monazite of Red Sediment Using Activated Carbon of Waste Tyres Source vol.100, pp.1, 2015, https://doi.org/10.1007/s40033-018-0168-1
  6. Economic analysis of thorium extraction from monazite vol.51, pp.2, 2019, https://doi.org/10.1016/j.net.2018.11.005
  7. Adsorption of Cd(II) in water by mesoporous ceramic functional nanomaterials vol.6, pp.4, 2015, https://doi.org/10.1098/rsos.182195
  8. Synthesis of amidoxime polymer gel to extract uranium compound from seawater by UV radiation curing vol.56, pp.6, 2015, https://doi.org/10.1080/00223131.2019.1602485
  9. Three-dimensional graphene materials for UO22+ electrosorption vol.321, pp.3, 2019, https://doi.org/10.1007/s10967-019-06650-2
  10. Crown ether-type organic composite adsorbents embedded in high-porous silica beads for simultaneous recovery of lithium and uranium in seawater vol.322, pp.2, 2015, https://doi.org/10.1007/s10967-019-06792-3
  11. Capacitive deionization and electrosorption for heavy metal removal vol.6, pp.2, 2020, https://doi.org/10.1039/c9ew00945k
  12. A Comprehensive review on the hierarchical performances of eco-friendly and functionally advanced modified and recyclable carbon materials vol.17, pp.7, 2020, https://doi.org/10.1007/s13738-020-01900-7
  13. Remediation of Thorium (IV) from Wastewater: Current Status and Way Forward vol.50, pp.2, 2015, https://doi.org/10.1080/15422119.2019.1639519
  14. A Review on the Synthesis and Applications of Nanoporous Carbons for the Removal of Complex Chemical Contaminants vol.94, pp.4, 2015, https://doi.org/10.1246/bcsj.20200379
  15. Removal of lithium and uranium from seawater using fly ash and slag generated in the CFBC technology vol.11, pp.36, 2021, https://doi.org/10.1039/d0ra09092a
  16. Carbon materials for extraction of uranium from seawater vol.278, pp.None, 2015, https://doi.org/10.1016/j.chemosphere.2021.130411
  17. A neutronic investigation of tristructural isotropic‐duplex fuel in a high‐temperature reactor prismatic seed‐and‐blanket fuel block configuration with reduced power peaking vol.45, pp.13, 2015, https://doi.org/10.1002/er.7021
  18. Asymmetric polysaccharide-bound graphene electrode configuration with enhanced electrosorption performance for uranium (VI) ions vol.424, pp.None, 2021, https://doi.org/10.1016/j.cej.2021.130351
  19. Accelerated Chemical Thermodynamics of Uranium Extraction from Seawater by Plant‐Mimetic Transpiration vol.8, pp.24, 2015, https://doi.org/10.1002/advs.202102250