DOI QR코드

DOI QR Code

강섬유로 보강된 초고강도 콘크리트의 일축압축 상태에서의 기계적 특성

Mechanical Characteristics of Ultra High Strength Concrete with Steel Fiber Under Uniaxial Compressive Stress

  • 최현기 (경남대학교 소방방재공학과) ;
  • 배백일 (한양대학교 산업과학연구소) ;
  • 최창식 (한양대학교 건축공학부)
  • Choi, Hyun-Ki (Dept. of Fire and Disaster Prevention Engineering, KyungNam University) ;
  • Bae, Baek-Il (Research Institute of Industrial Science, Hanyang University) ;
  • Choi, Chang-Sik (Dept. of Architectural Engineering, Hanyang University)
  • 투고 : 2015.01.13
  • 심사 : 2015.05.26
  • 발행 : 2015.10.30

초록

최근 개발중인 초고강도 또는 강섬유보강 초고강도 콘크리트는 현행 설계기준으로 설계할 경우 그 안전성에 대해 별도의 실험 또는 해석적 증명이 필요하다. 이를 위한 철근콘크리트 부재의 상세 해석에는 응력-변형률 관계의 정의가 필요하다. 이를 위해 본 연구에서는 현행 설계기준의 제한 범위를 벗어나는 강섬유보강 초고강도 콘크리트의 압축응력하에서의 기계적 특성을 정의하였다. 80~200 MPa 의 압축강도를 보유한 분체 콘크리트 매트릭스에 강섬유를 혼입하였으며, 섬유의 보강량에 따른 압축강도의 증진률에 대해 분석하고 압축강도에 따른 탄성계수와 최대응력 발현시의 변형률에 대해 조사 분석하였다. 넓은 콘크리트 압축강도 범위내에서 사용성 확보를 위해 기존 연구결과로부터 수집된 압축강도 증진률, 탄성계수, 최대응력 발현시 변형률의 크기에 대한 결과를 활용하여 기존 추정식의 평가를 수행하였다. 또한, 강섬유가 보강되어 있지 않은 매트릭스에 대한 기존 추정식 중 정확도가 높은 식을 기반으로, 강섬유의 영향을 반영할 수 있는 새로운 추정식을 위한 계수를 도출하였다.

Design of fiber reinforced ultra-high strength concrete members should be verified with analytical or experimental methods for safety. Members with compressive strength larger than limitation of current design code usually be designed with analytical verification using stress-strain relation of concrete and reinforcements. For this purpose, mechanical characteristics of steel fiber reinforced ultra-high strength concrete were defined under uniaxial compression. Mix proportions of test specimens were based on reactive powder concrete and straight steel fibers were mixed with different volume fraction. Compressive strength of matrix were distributed from 80 MPa to 200 MPa. Effect of fiber inclusion were investigated : increase of compressive strength of concrete, elastic modulus and strain corresponding to peak stress. For the wide range application of investigation, previously tested test specimens were collected and used for investigation and estimation equation. Based on the investigation and evaluation of previous research results and estimation equation of mechanical characteristics of concrete, regression equations were suggested.

키워드

참고문헌

  1. Korea Concrete Institute, Concrete Design Code and Commentary, Kimoondang Publishing Company, Seoul, Korea, 2012, pp.600.
  2. Popovics, S., A Numerical Approach to the Complete Stress- Strain Curve of Concrete, Cement and Concrete Research, Vol.3, No.5, 1973, pp.583-599. https://doi.org/10.1016/0008-8846(73)90096-3
  3. Sargin, M., Stress-Strain Relationship for Concrete and the Analysis of Structural Concrete Sections, Study 4, Solid Mechanics Division; University of Waterloo, Waterloo, Canada, 1971. pp.167.
  4. Tomaszewicz, A., Betongens Arbeidsdiagram, SINTEF, STF65, A84065, Trondheim, 1984.
  5. Carreira, D. J. and Chu, K. D., Stress-Strain Relationship for Plain Concrete in Compression, ACI Journal, Proc. Vol.82, No.6, 1985, pp.797-804.
  6. Collins, M. P., Mitchell, D., and MacGregor, J. G., Structural Design Considerations for High-Strength Concrete, Concrete International : Design and Construction, Vol.15, No.5, 1993, pp.27-34.
  7. Wee, T. H., Chin, M. S., and Mansur, M. A., Stress-Strain Relationship of High-Strength Concrete in Compression, Journal of Materials in Civil Engineering, Vol.8, No.2, 1996, pp.70-76. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:2(70)
  8. Wang, P. T., Shah, S. P., and Naaman, A. E., Stress-Strain Curves of Normal and Lightweight Concrete in Compression, ACI Journal Proceedings, Vol.75, No.1978, pp.603-611.
  9. Comite' Euro-International du Be'ton-Fe'de'ration Internationale de la Pre' contrainte. High Performance Concrete-Recommended Extensions to the Model Code 90, Research Needs. CEB, Bulletin dInformation 228. Lausanne, 1995, pp.60.
  10. Attard, M. M. and Setunge, S., Stress-strain relationship of confined and unconfined concrete. ACI Materials Journal, Vol.93, No.5, 1996, pp.432-442.
  11. Benjamin, A., Graybeal, Compressive Behavior of Ultra-High- Performance Fiber-Reinforced Concrete, ACI Materials Journal, Vol.104, No.2, 2007, pp.146-152.
  12. Ros, M., Material-technological foundation and problems of reinforced concrete (Eidgenossische Materialprfifungs und Versuchsanstalt fur Industrie, Bauwesen and Gewerbe), Bericht No.162 , Zurich, Switzerland, 1950. pp.314.
  13. Fafitis, A. and Shah, S. P., Predictions of ultimate behavior of confined columns subjected to large deformations, Ibid 82, No.4, 1985, pp.423-433.
  14. De Nocolo, B., Pani, L., and Pozzo, E., Strain of concrete at peak compressive stress for a wide range of compressive strengths, Materials and Structures, Vol.27, 1994, pp.206-210. https://doi.org/10.1007/BF02473034
  15. European Commitee for Standardization (CEN), Design of concrete structures-Part 1-1: General rules and rules for buildings. Eurocode 2, Brussels, Belgium. 2004, pp.225.
  16. Soroushian, P. and Lee, C. H., Constitutive Modeling of Steel Fiber Reinforced Concrete under direct Tension and Compression. Fibre Reinforced Cements and Concretes : Recent Developments. Proceedings of an International Conference held at The University of Wales, Collige of Cardiff, School of Engineering, United Kingdom, Sep, 18-20, 1989.
  17. Nataraja, M. C., Dhang, N., and Gupta, A. P., Stress-strain curves for steel-fiber reinforced concrete under compression, Cement and Concrete Composites, Vol.21, No.5-6, 1 December 1999, pp.383-390. https://doi.org/10.1016/S0958-9465(99)00021-9
  18. Dhakal, R. P., Wang, C., and Mander, J. B., Behavior of steel fibre reinforced concrete in compression. Nanjing: International Symposium on Innovation & Sustainability of Structures in Civil Engineering, Nov 2005.
  19. Korea Concrete Institute, Concrete Design Code and Commentary, Kimoondang Publishing Company, Seoul, Korea, 2007, pp.523.
  20. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, American Concrete Institute, Farmington Hills, Mich., 2011, pp.391.
  21. Salvador Martinez, Arthur H. Nilson, and Floyd 0. Slate, Spirally Reinforced High-Strength Concrete Columns, ACI Journal, 1984, Vol.81, No.5, pp.431-442.
  22. Cook, J. E., 10,000 PSI Concrete. Concrete International: Design and Construction, Oct.989, Vol.11, No.10, pp.67-75.
  23. Ahmad, Shuaib H. and Shah, Surendra P., Complete Triaxial Stress-Strain Curves for Concrete, Proceedings, ASCE, Vol.108, ST4, Apr. 1982, pp.728-742.
  24. Gao, J., Sun, W., and Morino, K., Mechanical properties of steel fiber reinforced high strength light weight concrete., Cement Concrete Composite, Vol.19, pp.307-313.
  25. Padmarajaiah, S. K., Influence of fibers on the behavior of high strength concrete in fully/partially prestressed beams : an experimental and analytical study, Ph.D. thesis, Indian Institute of Science, Bangalore, India. 1999.
  26. KS L 5111, Flow table for use in tests of hydraulic cement, Korean Agency for Technology and Standards, 2007. pp.1-5.
  27. KS F 2405, Standard Test Method for Compressive Strength of Concrete, Korean Agency for Technology and Standards, 2010. pp.1-16.
  28. Perera, S. V. T. J., Mutsuyoshi, H., and Asamoto, S., Properties of High-Strength Concrete, Proc. of 12th International Summer Symposium of Japan Society of Civil Engineers (JSCE), Funabashi-Japan, 2010.
  29. Kaiss, F. Sarsam, Ihsan, A. S., Al-Shaarbaf, Maha, M. S., Ridha, Experimental Investigation of Shear-Critical Reactive Powder Concrete Beams withoutWeb Reinforcement, Eng. &Tech. Journal, Vol.30, No.17, 2012, pp.2999-3022.
  30. Dawood Abdulhai Pandor, Behavior of High Strength Fiber Reinforced Concrete Beams in shear, Thesis of Master of Science, Massachusetts institute of technology, Feb, 1994, pp.124.
  31. Job Thomas and Ananth Ramaswamy, Mechanical Properties of Steel Fiber-Reinforced Concrete, Journal of Materials in Civil Engineering, Vol.19, No.5, May 1, 2007, pp.385-392. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385)
  32. Kang, S. T. and Ryu, G. S., The Effect of Steel-Fiber Contents on the Compressive Stress-Strain Relation of Ultra High Performance Cementitious Composites (UHPCC), Journal of the Korea Concrete Institute, Vol.23, No.1, February, 2011, pp.67-75. https://doi.org/10.4334/JKCI.2011.23.1.067
  33. Bhargava, P., Sharma, U. K., and Kaushil, K., Compressive stress-strain behavior of small scale steel fibre reinforced high strength concrete cylinders. Journal of Advanced Concrete Technology, Vol.14, No.1, 2006, pp.109-21.
  34. Ou, Y. C., Tsai, M. S., Liu, K. Y., and Chang, K. C., Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index, Journal of Materials in Civil Engineering, Vol.24, No.2, February 1, 2012, pp.207-215.
  35. A. Samer Ezeldin, Perumalsamy N. Balaguru, Normal- and High-Strength Fiber Reinforced Concrete under Compression, Journal of Materials in Civil Engineering, Vol.4, No.4, November, 1992., pp.415-429. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
  36. Jo, B. W., Shon, Y. H., and Kim, Y. J., The Evalution of Elastic Modulus for Steel Fiber Reinforced Concrete, Russian Journal of Nondestructive Testing, Vol.37, No.2, 2001, pp.152D161. Translated from Defektoskopiya, No.2, 2001, pp.87D96.
  37. Obata Kazuhiro, Sugano Shunsuke, Araki Hideo, Kitakaze Nobu, Murakami Yuichi, Shirai Kazuyoshi, and Kimura Hideki, An experimental study on the compressive properties of the super-high strength concrete, Architectural Institute of Japan, China Branch, Research report collection, Vol.25, March, 2002, pp.329-332.
  38. Ramachandra Murthy, A., Nagesh R. Iyer, and B. K. Raghu Prasad, Evaluation of mechanical properties for high strength and ultrahigh strength concretes, Advances in Concrete Construction, Vol.1, No.4, 2013, pp.341-358. https://doi.org/10.12989/acc2013.1.4.341
  39. Nageh, N., Meleka, Alaa A. Bashandy, Mohamed A. Arab, Ultra High Strength Concrete Using Economical Materials, International Journal of Current Engineering and Technology, Vol.3, No.2, June 2013, pp.393-402.
  40. Moldovan, D. and Magureanu, C., Stress-Strain Diagram For High Strength Concrete Elements In Flexure, Proc. 3rd Int. Conference, Advanced Composite Materials Engineering, CONMAT 2010, 27-29 October 2010, Brasov, Romania, Transilvania University Press of Brasov, pp.137-142.
  41. Wasan, I. Khalil and Tayfur Y. R., Flexural Strength of Fibrous Ultra High Performance Reinforced Concrete Beams, ARPN Journal of Engineering and Applied Sciences, Vol.8, No.3, MARCH 2013, pp.200-21431.
  42. Narayanan, R. and Darwish, I. Y. S., Use of Steel Fibers as Shear Reinforcement, ACI Structural Journal, Vol.84, No.3, 1987, pp.216-227.