DOI QR코드

DOI QR Code

Shear Strength of Steel Fiber Concrete - Plain Concrete Composite Beams

강섬유보강 콘크리트와 일반 콘크리트 합성보의 전단강도

  • Kim, Chul-Goo (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Park, Hong-Gun (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Hong, Geon-Ho (Dept. of Architectural Engineering, Hoseo University) ;
  • Kang, Su-Min (Dept. of Architectural Engineering, Chungbuk National University)
  • Received : 2014.12.22
  • Accepted : 2015.06.09
  • Published : 2015.10.30

Abstract

Composite construction of precast concrete and cast-in-place concrete is currently used for the modular construction. In this case, the use of steel fiber reinforced concrete (SFRC) could be beneficial for precast concrete. However, the shear strength of such composite members (SFRC and cast-in-place concrete) is not clearly defined in current design codes. In the present study, steel fiber composite beam tests were conducted to evaluate the effect of steel fibers on the composite members. The test variables are the area ratio of SFRC and shear reinforcement ratio. The test results showed that when minimum horizontal shear reinforcement was used, the shear strength of composite beams increased in proportion to the area ratio of steel fiber reinforced concrete. However, because of the steel fiber, the composite beams were susceptible to horizontal shear failure. Thus, minimum horizontal shear reinforcement is required for SFRC composite beams.

최근 프리캐스트 콘크리트에 현장타설 콘크리트를 타설하는 복합화 공법의 사용이 증가하고 있다. 강섬유 콘크리트는 습식공법에서는 시공성 문제로 적용이 어렵지만, 공장에서 선 제작이 이뤄지는 프리캐스트 부재에는 충분히 사용 가능하다. 강섬유 콘크리트가 복합화 공법에 사용되면 서로 재료적 특성이 다른 강섬유 콘크리트와 일반 콘크리트 합성단면의 전단강도 산정법이 문제가 되고 있다. 하지만 현행 기준은 명확한 기준을 제시하지 못하고 있는 실정이다. 따라서 강섬유 콘크리트가 사용된 합성 부재의 전단강도 실험을 통해 강섬유 콘크리트가 합성단면의 전단강도에 미치는 영향을 살펴보았다. 실험 변수로는 합성단면적비와 전단철근비를 고려하였다. 실험결과를 살펴보면, 강섬유가 인장대에 보강된 경우 강섬유 보강 단면적에 비례하여 전단강도가 증가하였다. 하지만 강섬유의 영향으로 인해 계면에서 수평전단파괴가 쉽게 발생하기 때문에 최소 수평전단철근이 반드시 필요하다.

Keywords

References

  1. Batson, G., Jenkins, E., and Spatney, R., "Steel Fibers as Shear Reinforcement in Beams", ACI Journal Proceedings, Vol.69, No.10. Oct. 1972, pp.640-644.
  2. Swamy, R. and Bahia, H., "The Effectiveness of Steel Fibers as Shear Reinforcement", Concrete International, Vol.7, No.3. Mar. 1985, pp.35-40.
  3. Sharma, A., "Shear Strength of Steel Fiber Reinforced Concrete Beams", ACI Journal Proceedings, Vol.83, No.4. July-Aug. 1986, pp.624-628.
  4. Mansur, M., Ong, K., and Paramasivam, P., "Shear Strength of Fibrous Concrete Beams without Stirrups", Journal of Structural Engineering, Vol.112, No.9. 1986, pp.2066-2079. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
  5. Narayanan, R. and Darwish, I., "Use of Steel Fibers as Shear Reinforcement", ACI Structural Journal, Vol.84, No.3. May-June, 1987, pp.216-227.
  6. Ashour, S. A., Hasanain, G. S., and Wafa, F. F., "Shear Behavior of High-Strength Fiber Reinforced Concrete Beams", ACI Structural Journal, Vol.89, No.2. Mar. - April, 1992, pp.176-184.
  7. Li, V. C., Ward, R., and Hmaza, A. M., "Steel and Synthetic Fibers as Shear Reinforcement", ACI Materials Journal, Vol.89, No.5. Sep. - Oct. 1992, pp.499-508.
  8. Khuntia, M., Stojadinovic, B., and Goel, S. C., "Shear Strength of Normal and High-Strength Fiber Reinforced Concrete Beams without Stirrups", ACI Structural Journal, Vol.96, No.2. Mar. - April, 1999, pp.282-289.
  9. Dinh, H. H., Parra-Montesinos, G. J., and Wight, J. K., "Shear Behavior of Steel Fiber-Reinforced Concrete Beams without Stirrup Reinforcement", ACI Structural Journal, Vol.107, No.5. Sep. - Oct. 2010, pp.597-606.
  10. Minelli, F. and Plizzari, G. A., "On the Effectiveness of Steel Fibers as Shear Reinforcement", ACI Structural Journal, Vol.110, No.3. May - June, 2013, pp.379-389.
  11. Parra-Montesinos, G. J., "Shear Strength of Beams with Deformed Steel Fibers", CONCRETE INTERNATIONAL, Vol.28, No.11. Nov. 2006, pp.57-66.
  12. Korea Concrete Institute, "Concrete Design Code and Commentary", Kimoondang Publishing Company, Seoul, Korea, 2012.
  13. ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary", American Concrete Institute, Farmington Hills, MI, 2011.
  14. ACI Committee 544, "Design Considerations for Steel Fiber Reinforced Concrete", ACI Structural Journal, Vol.85, No.5. 1988, pp.1-18.
  15. Kim, C. G., Park, H. G., Hong, G. H., and Kang, S. M., "Shear strength of Hybrid Beams Combining Precast Concrete and Cast-In-Place Concrete", Journal of the Korea Concrete Institute, Vol.25, No.2, 2013, pp.175-185. https://doi.org/10.4334/JKCI.2013.25.2.175
  16. Kim, C. G., Park, H. G., Hong, G. H., and Kang, S. M., "Shear Strength of PC-CIP Composite Beams with Shear reinforcement", Journal of the Korea Concrete Institute, Vol.26, No.2, 2014, pp.189-199. https://doi.org/10.4334/JKCI.2014.26.2.189
  17. Kim, C. G., Park, H. G., Hong, G. H., Kang, S. M., and Suh, J. I., "Shear Strength of Prestressed PC-CIP Composite Beams without Vertical Shear Reinforcements", Journal of the Korea Concrete Institute, Vol.26, No.4, 2014, pp.533-543. https://doi.org/10.4334/JKCI.2014.26.4.533
  18. AASHTO-LRFD, "Bridge Design Specifications", American Association of State Highway and Transportation Officials, Washington, D.C., 2012.
  19. CSA, "Design of Concrete Structures", Canadian Standard Association, Rexdale, Ontario, Canada, 2004.
  20. Banta, T. E., "Horizontal shear transfer between ultra high performance concrete and lightweight concrete", Virginia Polytechnic Institute and State University, 2005, pp.1-130.