DOI QR코드

DOI QR Code

고강도 철근을 사용한 철근콘크리트 패널의 비선형 유한요소해석

Nonlinear Finite Element Analysis of the Reinforced Concrete Panel using High-Strength Reinforcing Bar

  • 천주현 (성균관대학교 건설환경연구소) ;
  • 성대정 (삼성물산 토목사업부) ;
  • 조홍재 (삼성물산 토목사업부) ;
  • 조재열 (서울대학교 건설환경공학부) ;
  • 신현목 (성균관대학교 건축.토목공학부)
  • Cheon, Ju-Hyun (Construction and Environmental Lab., SungKyunKwan University) ;
  • Seong, Dae-Jung (Dept. of Civil, Samsung C&T Corporation) ;
  • Cho, Hong-Jae (Dept. of Civil, Samsung C&T Corporation) ;
  • Cho, Jae-Yeol (Dept. of Civil & Environmental Engineering, Seoul National University) ;
  • Shin, Hyun-Mock (Dept. of Civil and Architecture Engineering, SungKyunKwan University)
  • 투고 : 2014.11.20
  • 심사 : 2015.06.15
  • 발행 : 2015.10.30

초록

이 연구에서는 고강도 철근이 사용된 철근콘크리트 패널 실험체의 파괴에 이르기까지의 전반적인 거동특성을 합리적으로 예측하기위한 해석적 방안을 마련하는 것을 목표로 한다. 다양한 하중 조건과 설계 변수하에서 실제 격납구조물 벽체 두께의 1/3 규모를 갖는 총 12개의 철근콘크리트 패널 실험체를 검증 대상으로 선정하여 저자 등에 의해 개발된 비선형 유한요소해석 프로그램(RCAHEST)을 적용하여 해석을 수행하였다. 균열 발생 시점에서의 전단 강도와 최대 전단 강도에 대한 실험과 해석으로부터의 평균과 변동계수는 각각 1.03과 12% 및 0.97과 9%정도로 예측되었다. 최대 전단 강도에서의 전단 변형률에 대한 실험과 해석으로부터의 결과는 평균과 변동계수가 각각 0.96과 30% 정도로 예측되었다. 결과를 종합해 볼 때, 이 연구에서 새로운 수정한 구성방정식을 적용한 해석프로그램은 그 해석 결과에 비교적 높은 신뢰도를 확보하고 있는 것으로 판단된다.

The purpose of this study is to provide analytical method to reasonably predict the overall behavior up to destruction of reinforced concrete panel specimens using high-strength reinforcing bar. A total of 12 specimens of reinforced concrete panels with a wall thickness one-third the size of the actual nuclear containment structures under various loading conditions and design parameters were selected and the analysis was performed using a non-linear finite element analysis program (RCAHEST) was developed by the authors. The mean and coefficient of variation for shear strength at cracking point and maximum shear strength from the experiment and analysis results was predicted 1.03 and 12%, 0.97 and 9%, respectively. For the shear strain at the maximum shear strength from the experiment and analysis results was predicted 0.96 and 30%, respectively. Based on the results, the analysis program that was applied newly modified constitutive equation in this study is judged as having a relatively high reliability for the analysis results.

키워드

참고문헌

  1. Park, H. G., Lee, J. H., Shin, H. M., and Baek, J. W., "Cyclic Loading Test for Shear Strength of Low-rise RC Walls With Grade 550 MPa Bars", Journal of the Korea Concrete Institute, Vol.25, No.6, 2013, pp.601-612. https://doi.org/10.4334/JKCI.2013.25.6.601
  2. Bae, G. M., Proestos, G. T., Lee, S. C., Bentz, E. C., Collins, M. P., and Cho, J. Y., "In-Plane Shear Behavior of Nuclear Power Plant Wall Elements with High-Strength Reinforcing Bars", Transactions of SMiRT-22, San Francisco, USA, 2013, pp.1844-1853.
  3. Vecchio, F. J. and Collins, M. P., "The Modified Compression- Field Theory for Reinforced Concrete Elements subjected to Shear", ACI Structural Journal, Vol.83, No.2, 1986, pp.219-231.
  4. Vecchio, F. J. and Collins, M. P., "Predicting the Response of Reinforced Concrete Beams Subjected to Shear using Modified Compression Field Theory", ACI Structural Journal, Vol.85, No.3, 1988, pp.258-268.
  5. Stevens, N. J., Uzumeri, S. M., and Collins, M. P., "Reinforced Concrete Subjected to Reversed Cyclic Shear-Experiments and Constitutive Model", ACI Structural Journal, Vol.88, No.2, 1991, pp.135-146.
  6. Kim, T. H. and Shin, H. M., "Analytical Approach to Evaluate the Inelastic Behaviors of Reinforced Concrete Structures under Seismic Loads", Journal of the Earthquake Engineering Society of Korea, Vol.5, No.2, 2001, pp.113-124.
  7. Kwak, H. G. and Kim, D. Y., "Cracking Behavior of RC Panels Subject to Biaxial Tensile Stresses", Journal of the Korea Society of Civil Engineers, Vol.24, No.6a, 2004, pp.1223-1233.
  8. Lee, J. Y., "Predicting the Nonlinear Behavior of Reinforced Concrete Membrane Elements Subjected to Reversed Cyclic Loading", Journal of the Earthquake Engineering Society of Korea, Vol.6, No.4, 2002, pp.7-14. https://doi.org/10.5000/EESK.2002.6.4.007
  9. Seong, D. J., Kim, T. H., Oh, M. S., and Shin, H. M., "Inelastic Performance of High-Strength Concrete Bridge Columns under Earthquake Loads", Journal of Advanced Concrete Technology, Vol.9, No.2, 2011, pp.205-220. https://doi.org/10.3151/jact.9.205
  10. Cheon, J. H., Kim, T. H., Lee, B. J., Lee, J. H., and Shin, H. M., "Inelastic Behavior and Ductility Capacity of Circular Hollow Reinforced Concrete Bridge Piers under Earthquake", Magazine of Concrete Research, Vol.64, No.10, 2012, pp.919-930. https://doi.org/10.1680/macr.11.00131
  11. Shima, H., Chou, L., and Okamura, H., "Micro and Macro Models for Bond Behavior in Reinforced Concrete", Journal of the Faculty of Engineering, University of Tokyo, Vol.39, No.2, 1987, pp.133-194.
  12. Vecchio, F. J., Collins, M. P., and Aspiotis, J., "High-Strength Concrete Elements Subjected to Shear", ACI Structural Journal, Vol.91, No.4, 1994, pp.423-433.
  13. Maekawa, K. and Okamura, H., "The Deformational Behavior and Constitutive Equation of Concrete using Elasto-Plastic Fracture Model", Journal of the Faculty of Engineering, University of Tokyo, Vol.37, No.2, 1983, pp.253-328.
  14. Bujadham, B. and Maekawa, K., "Qualitative Studies on Mechanism of Stress Transfer across Cracks in Concrete", Prodeedings of Japan Society of Civil Engineering, Vol.17, No.451, 1992, pp. 265-275.
  15. Li, B., Maekawa, K., and Okamura, H., "Contact Density Model for Stress Transfer Across Crack in Concrete", Journal of the Faculty of Engineering, University of Tokyo, Vol.40, No.1, 1989, pp.9-52.
  16. Shin, H. M., "Finite Element Analysis of Reinforced Concrete Members subjected to Reversed Cyclic In-Plane Loadings", Ph.D. thesis, 1988, University of Tokyo.

피인용 문헌

  1. Analytical Study on Behavior Characteristic of Shear Friction on Reinforced Concrete Shear Wall-Foundation Interface using High-Strength Reinforcing Bar vol.28, pp.4, 2016, https://doi.org/10.4334/JKCI.2016.28.4.473