DOI QR코드

DOI QR Code

에탄올 투여 랫드에서 곰취 열수 추출 발효물이 간 독성에 미치는 영향

Effects of Fermented Water Extracts from Ligularia fischeri on Hepatotoxicity in Ethanol-Induced Rats

  • 유근형 ((재)춘천바이오산업진흥원 기술개발실) ;
  • 이선엽 ((재)춘천바이오산업진흥원 기술개발실) ;
  • 양현모 ((재)춘천바이오산업진흥원 기술개발실) ;
  • 함영안 ((재)춘천바이오산업진흥원 기술개발실) ;
  • 이수응 ((재)춘천바이오산업진흥원 기술개발실) ;
  • 채승완 (성균관대학교 의과대학 강북삼성병원 병리과) ;
  • 이용진 ((재)춘천바이오산업진흥원 기술개발실)
  • Yu, Keun-Hyung (Department of Technical Development Chuncheon Bioindustry Foundation) ;
  • Lee, Sun-Yeop (Department of Technical Development Chuncheon Bioindustry Foundation) ;
  • Yang, Hyun-Mo (Department of Technical Development Chuncheon Bioindustry Foundation) ;
  • Ham, Young-Ahn (Department of Technical Development Chuncheon Bioindustry Foundation) ;
  • Lee, Soo-Ung (Department of Technical Development Chuncheon Bioindustry Foundation) ;
  • Chae, Seoung-Wan (Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Lee, Yong-Jin (Department of Technical Development Chuncheon Bioindustry Foundation)
  • 투고 : 2015.06.29
  • 심사 : 2015.07.25
  • 발행 : 2015.10.31

초록

본 연구는 항산화 활성이 우수한 것으로 알려진 곰취의 활용 가치를 높이고 향후 건강기능식품 소재로서의 가능성을 확인하고자 에탄올 동물모델에서의 간 기능 개선 효과를 연구하였다. 실험기간 동안 실험동물의 체중 증가량 및 간 무게의 경우 처리군 간 유의적인 차이는 없었다. 혈청 중 GGT(${\gamma}$-glutamyl transferase), AST(aspartate aminotransferase), ALT(alanine aminotransferase) 및 LDH(lactate dehydrogenase) 측정 결과 대조군에서 정상식이군과 비교하여 유의하게 증가하였다(P<0.05). 곰취 열수 추출물(100, 200, 400 mg/kg BW) 및 발효물(400 mg/kg BW) 투여군에서 대조군과 비교하여 GGT 수치가 유의하게 감소하였으며(P<0.05), 곰취 열수 추출물(200, 400 mg/kg BW) 및 발효물(100, 200, 400 mg/kg BW) 투여군에서 대조군과 비교하여 AST 수치가 유의하게 감소하였다(P<0.05). 곰취 열수 추출물 및 발효물 모든 투여군에서 대조군과 비교하여 ALT 및 LDH 수치가 유의하게 감소하였다(P<0.05). 혈청 중 총 콜레스테롤 측정 결과 정상식이군과 대조군 간의 유의적인 차이는 없었으나 발효물 투여군(200, 400 mg/kg BW)에서 대조군과 비교하여 유의하게 감소하였다(P<0.05). HDL(high density lipoprotein)-콜레스테롤 측정 결과 정상식이군과 대조군 간 유의적인 차이는 없었으나, 발효물 투여군(200, 400 mg/kg BW)에서 대조군과 비교하여 유의하게 감소하였다(P<0.05). 곰취 열수 추출물 및 발효물의 경우 대조군과 비교하여 LDL(low density lipoprotein)-콜레스테롤이 감소하는 것으로 나타났으나 유의적인 차이는 없었다. 중성지방의 경우 정상식이군과 비교하여 대조군에서 증가하는 것으로 나타났으나 유의적인 차이는 없는 것으로 나타났으며, 곰취 열수 추출물(400 mg/kg BW) 및 발효물(200, 400 mg/kg BW) 투여군에서 감소하는 것으로 나타났으나 유의적인 차이는 없었다. 총 콜레스테롤 함량 중 HDL-콜레스테롤 함량 비율 및 동맥경화지수를 조사한 결과 모든 처리군간에 유의적인 차이는 없었다. 간 조직 내 superoxide dismutase(SOD) 활성을 측정한 결과 발효물 투여군(400 mg/kg BW)에서 대조군과 비교하여 유의하게 증가하였다(P<0.05). 간 조직 내 과산화지질의 분해산물인 malondialdehyde(MDA) 측정 결과 에탄올을 단독 투여한 대조군에서 MDA 함량이 가장 높게 나타났으며, 발효물을 투여한 모든 농도에서 MDA 함량이 유의적으로 감소하였다(P<0.05). 간조직의 병리학적 분석 결과 모든 처리군에서 간문맥에 염증이 거의 관찰되지 않았고 곰취 열수 추출물 및 발효물 처리군에서 대조군과 비교하여 지방증 등이 개선되는 경향을 보였으나 유의적인 차이는 없는 것으로 나타났다. 곰취 열수추출 발효물의 투여가 혈청 GGT, AST, ALT 및 LDH 활성을 유의적으로 감소시켜 간 기능 개선 효과가 있음을 확인할 수 있었으며, 간 조직 내 SOD 활성을 증가시키고 지질과산화 반응을 억제시킴으로써 알코올로 인한 간 손상을 완화시키는 데 효과적일 것으로 사료되며, 향후 건강기능식품 소재로 이용 가능할 것으로 사료된다.

This study was conducted to determine the effects of fermented water extracts from Ligularia fischeri (LAF) on reduction of hepatotoxicity induced by ethanol in rats. Ethanol-treated Sprague-Dawley rats were divided into the following eight groups: ethanol-treated group (control), ethanol and ursodeoxycholic acid-treated group (positive control), ethanol and non-fermented water extracts from Ligularia fischeri (LA)-treated groups [100, 200, and 400 mg/kg BW (body weight)], ethanol and LAF-treated groups (100, 200, and 400 mg/kg BW). ${\gamma}$-Glutamyl transferase activities of the ethanol+LA-treated (100, 200, and 400 mg/kg BW) groups and ethanol+LAF-treated (400 mg/kg BW) group decreased significantly compared to those in the control group (P<0.05). Aspartate aminotransferase activities of the ethanol+LAF-treated (100, 200, and 400 mg/kg BW) groups and ethanol+LA-treated (200 and 400 mg/kg BW) groups decreased significantly compared to those in the control group (P<0.05). Alanine aminotransferase and lactate dehydrogenase activities of all groups significantly decreased compared to those in the control group (P<0.05). The total cholesterol, low density lipoprotein-cholesterol, and triglyceride levels of all groups tended to decrease compared to those in the control group, but the differences were not significant. Superoxide dismutase activity of liver tissues was enhanced in the ethanol+LAF-treated (400 mg/kg BW) group (P<0.05). The contents of malondialdehyde in liver tissues decreased in the ethanol+LAF-treated groups (P<0.05). All treated groups showed well preserved lobular architectures with no evidence of steatosis or liver damage compared to the control group. As the results of this study, LAF may improve the plasma lipid profile and alleviate hepatic damage by ethanol.

키워드

참고문헌

  1. Tsukamoto S, Kanegae T, Uchigasaki S, Kitazawa M, Fujioka T, Fujioka S, Imamura Y, Nagoya T, Shimamura M, Mieda Y. 1993. Changes in free and bound alcohol metabolites in the urine during ethanol oxidation. Arukoru Kenkyuto Yakubutsu Ison 28: 441-452.
  2. Lieber CS, Garro A, Leo MA, Mak KM, Worner T. 1986. Alcohol and cancer. Hepatology 6: 1005-1019. https://doi.org/10.1002/hep.1840060533
  3. Lieber CS. 1994. Alcohol and liver update: 1994 update. Gastroenterology 106: 1085-1105.
  4. Lieber CS. 1995. Medical disorders of alcoholism. N Engl J Med 333: 1058-1065. https://doi.org/10.1056/NEJM199510193331607
  5. Lieber CS. 2004. The unexpected outcomes of medical research: serendipity and the microsomal ethanol oxidizing system. J Hepatol 40: 198-202. https://doi.org/10.1016/j.jhep.2003.12.005
  6. Han EK, Jin YX, Yoo YS, Jung EJ, Lee JY, Chung CK. 2009. Effect of Artemisia capillaris and Paecilomyces japonica on the reduction of hepatotoxicity and lipid metabolism induced by ethanol. J Korean Soc Food Sci Nutr 38: 1016-1023. https://doi.org/10.3746/jkfn.2009.38.8.1016
  7. Yu KH, Lee SY, Yang HM, Ham YA, Lee SU, Chae SW, Lee YJ. 2013. Effects of the Artemisia capillaris extract on the hepatotoxicity in ethanol-induced rats. J Korean Soc Food Sci Nutr 42: 1560-1566. https://doi.org/10.3746/jkfn.2013.42.10.1560
  8. Zakhari S. 2006. Overview: how is alcohol metabolized by the body? Alcohol Res & Health 29: 245-254.
  9. Lieber CS. 1970. New pathway of ethanol metabolism in the liver. Gastroenterology 59: 930-937.
  10. Bleich HL, Boro ES. 1977. Metabolic and hepatic effects of alcohol. N Engl J Med 296: 612-616. https://doi.org/10.1056/NEJM197703172961106
  11. Gramenzi A, Caputo F, Biselli M, Kuria F, Loggi E, Andreone P, Bernardi M. 2006. Review article: alcoholic liver disease-pathophysiological aspects and risk factors. Aliment Pharmacol Ther 24: 1151-1161. https://doi.org/10.1111/j.1365-2036.2006.03110.x
  12. Das SK, Vasudevan DM. 2007. Alcohol-induced oxidative stress. Life Sci 81: 177-187. https://doi.org/10.1016/j.lfs.2007.05.005
  13. Nagata K, Suzuki H, Sakaguchi S. 2007. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis. J Toxicol Sci 32: 453-468. https://doi.org/10.2131/jts.32.453
  14. Byers T, Perry G. 1992. Dietary carotenes, vitamin C, and vitamin E as protective antioxidants in human cancers. Annu Rev Nutr 12: 135-159.
  15. Lawrence RA, Burk RF. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71: 952-958. https://doi.org/10.1016/0006-291X(76)90747-6
  16. Polavarapu R, Spitz DR, Sim JE, Follansbee MH, Oberley LW, Rahemtulla A, Nanji AA. 1998. Increased lipid peroxidation and impaired antioxidant enzyme function is associated with pathological liver injury in experimental alcoholic liver disease in rats fed diets high in corn oil and fish oil. Hepatology 27: 1317-1323. https://doi.org/10.1002/hep.510270518
  17. Rouach H, Fataccioli V, Gentil M, French SW, Morimoto M, Nordmann R. 1997. Effect of chronic ethanol feeding on lipid peroxidation and protein oxidation in relation to liver pathology. Hepatology 25: 351-355. https://doi.org/10.1002/hep.510250216
  18. French SW, Wong K, Jui L, Albano E, Hagbjork AL, Ingelman-Sundberg M. 1993. Effect of ethanol on cytochrome P450 2E1 (CYP2E1), lipid peroxidation, and serum protein adduct formation in relation to liver pathology pathogenesis. Exp Mol Pathol 58: 61-75. https://doi.org/10.1006/exmp.1993.1006
  19. Nanji AA. 2004. Role of different dietary fatty acids in the pathogenesis of experimental alcoholic liver disease. Alcohol 34: 21-25. https://doi.org/10.1016/j.alcohol.2004.08.005
  20. Kim SM, Kang SW, Um BH. 2010. Extraction condition of radical scavenging caffeoylquinic acids from Gomchui (Ligularia fischeri) tea. J Korean Soc Food Sci Nutr 39: 399-405. https://doi.org/10.3746/jkfn.2010.39.3.399
  21. Bae JH, Yu SO, Kim YM, Chon SU, Kim BW, Heo BG. 2009. Physiological activity of methanol extracts from Ligularia fischeri and their hyperplasia inhibition activity of cancer cell. J Bio-Environ Control 18: 67-73.
  22. Kim DW, Son KH, Chang HW, Bae K, Kang SS, Kim HP. 2004. Anti-inflammatory activity of Sedum kamtschaticum. J Ethnopharmacol 90: 409-414. https://doi.org/10.1016/j.jep.2003.11.005
  23. Ham SS, Lee SY, Oh DH, Jung SW, Kim SH, Chung CK, Kang IJ. 1998. Antimutagenic and antigenotoxic effects of Ligularia fischeri extracts. J Korean Soc Food Sci Nutr 27: 745-750.
  24. Jeong S, Kim E, Hwangbo H, Ham S. 1998. Effects of Ligularia fischeri extracts on oxidation of low density lipoprotein. Korean J Food Sci Technol 30: 1214-1221.
  25. Choi EM, Kim YH. 2008. A preliminary study of the effects of an extract of Ligularia fischeri leaves on type II collagen-induced arthritis in DBA/1J mice. Food Chem Toxicol 46: 375-379. https://doi.org/10.1016/j.fct.2007.08.018
  26. Choi EM, Suh KS. 2009. Ligularia fischeri leaf extract suppresses proinflammatory mediators in SW982 human synovial cells. Phytother Res 23: 1575-1580. https://doi.org/10.1002/ptr.2823
  27. Choi EM, Ding Y, Nguyen HT, Park SH, Kim YH. 2007. Antioxidant activity of Gomchi (Ligularia fischeri) leaves. Food Sci Biotechnol 16: 710-714.
  28. Choi EM. 2007. Ligularia fischeri leaf extract prevents the oxidative stress in DBA/1J mice with type II collagen-induced arthritis. J Appl Toxicol 27: 176-182. https://doi.org/10.1002/jat.1190
  29. Choi GP, Chung BH, Lee DI, Lee HY, Lee JH, Kim JD. 2002. Screening of inhibitory activities on angiotensin converting enzyme from medicinal plants. Korean J Medicinal Crop Sci 10: 399-402.
  30. Choi J, Park JK, Lee KT, Park KK, Kim WB, Lee JH, Jung HJ, Park HJ. 2005. In vivo antihepatotoxic effects of Ligularia fischeri var. spiciformis and the identification of the active component, 3,4-dicaffeoylquinic acid. J Med Food 3: 348-352.
  31. McCord JM, Fridovich I. 1969. Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055.
  32. Troncoso Brindeiro CM, Lane PH, Carmines PK. 2012. Tempol prevents altered $K^+$ channel regulation of afferent arteriolar tone in diabetic rat kidney. Hypertension 59: 657-664. https://doi.org/10.1161/HYPERTENSIONAHA.111.184218
  33. Gove ME, Rhodes DH, Pini M, van Baal JW, Sennello JA, Fayad R, Cabay RJ, Myers MG Jr, Fantuzzi G. 2009. Role of leptin receptor-induced STAT3 signaling in modulation of intestinal and hepatic inflammation in mice. J Leukoc Biol 85: 491-496.
  34. Yoo JH, Oidovsambuu S, Kim SM, Jeon NR, Yun JH, Kang YK, Jho EH, Lee SB, Nho CW. 2011. Hepatoprotective effect of Handaeri-gomchi (Ligularia fischeri var. spiciformis Nakai) extract against chronic alcohol-induced liver damage in rats. Food Sci Biotechnol 20: 1655-1661. https://doi.org/10.1007/s10068-011-0228-x
  35. Thurman RG, Bradford BU, Iimuro Y, Knecht KT, Connor HD, Adachi Y, Wall C, Arteel GE, Raleigh JA, Forman DT, Mason RP. 1997. Role of Kupffer cells, endotoxin and free radicals in hepatotoxicity due to prolonged alcohol consumption: studies in female and male rats. J Nutr 127: 903S-906S.
  36. Nordmann R, Ribiere C, Rouach H. 1992. Implication of free radical mechanisms in ethanol-induced cellular injury. Free Radic Biol Med 12: 219-240. https://doi.org/10.1016/0891-5849(92)90030-K
  37. Jeon SM, Bok SH, Jang MK, Lee MK, Nam KT, Park YB, Rhee SJ, Choi MS. 2001. Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci 69: 2855-2866. https://doi.org/10.1016/S0024-3205(01)01363-7
  38. Moon SH, Lee MK, Chae KS. 2001. Inhibitory effects of the solvent fractions from persimmon leaves on xanthine oxidase activity. Korean J Food & Nutr 14: 120-125.
  39. de Haan JB, Cristiano F, Iannello RC, Kola I. 1995. Cu/Zn-superoxide dismutase and glutathione peroxidase during aging. Biochem Mol Biol Int 35: 1281-1297.