DOI QR코드

DOI QR Code

Comparison of OC and EC Measurement Results Determined by Thermal-optical Analysis Protocols

열광학적 분석 프로토콜에 의한 유기탄소와 원소탄소 측정값 비교

  • Kim, Hyosun (Center for Gas analysis, Korea Research Institute of Standards and Science) ;
  • Jung, Jinsang (Center for Gas analysis, Korea Research Institute of Standards and Science) ;
  • Lee, Jinhong (Department of Environmental Engineering, Chungnam National University) ;
  • Lee, Sangil (Center for Gas analysis, Korea Research Institute of Standards and Science)
  • 김효선 (한국표준과학연구원 대기환경표준센터) ;
  • 정진상 (한국표준과학연구원 대기환경표준센터) ;
  • 이진홍 (충남대학교 환경공학과) ;
  • 이상일 (한국표준과학연구원 대기환경표준센터)
  • Received : 2015.08.27
  • Accepted : 2015.09.30
  • Published : 2015.10.31

Abstract

Carbonaceous aerosol is generally classified into OC (organic carbon) and EC (elemental carbon) by thermal optical analysis. Both NIOSH (National institute of occupational safety and health) with high temperature (HighT) and IMPROVE-A (Interagency monitoring of protected visual environments) with low temperature (LowT) protocols are widely used. In this study, both protocols were applied for ambient $PM_{2.5}$ samples (Daejeon, Korea) in order to underpin differences in OC and EC measurements. An excellent agreement between NIOSH and IMPROVE-A protocol was observed for TC (total carbon). However, significant differences between OC and EC appeared and the differences were larger for EC than OC. The main differences between two protocols are temperature profile and charring correction method. For the same charring correction method, HighT_OC was 10% higher than LowT_ OC, while HighT_EC was 15% and 33% lower than LowT_EC for TOT (thermal-optical transmittance) and TOR (thermal-optical reflectance), respectively. This difference may be caused by the temperature of OC4 in He step and possibly difference in POC (pryorilized OC) formation. For the same temperature profile, OC by TOT was about 26% higher than that by TOR. In contrast, EC by TOT was about 50% lower than that by TOR. POC was also dependent on both temperature profile and the charring correction method, showing much distinctive differences for the charring correction method (i.e., POC by TOT to POC by TOR ratio is about 2). This difference might be caused by different characteristics between transmittance and reflectance for monitoring POC formation within filters. Results from this study showed that OC and EC depends on applied analysis protocol as shown other studies. Because of the nature of the thermal optical analysis, it may not be possible to have an absolute standard analysis protocol that is applicable for any ambient $PM_{2.5}$. Nevertheless, in order to provide consistent measurement results for scientists and policy makers, future studies should focus on developing a harmonized standard analysis protocol that is suitable for a specific air domain and minimizes variations in OC and EC measurement results. In addition, future elaborate studies are required to find and understand the causes of the differences.

Keywords

References

  1. Birch, M.E. (1998) Analysis of carbonaceous aerosols: interlaboratory comparison, Analyst, 123(5), 851-857. https://doi.org/10.1039/a800028j
  2. Birch, M.E. and R.A. Cary (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust, Aerosol Sci. Technol., 25(3), 221-241. https://doi.org/10.1080/02786829608965393
  3. Cavalli, F., M. Viana, K.E. Yttri, J. Genberg, and J.P. Putaud (2010) Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Techn., 3(1), 79-89. https://doi.org/10.5194/amt-3-79-2010
  4. Chen, L.W.A., J.C. Chow, J.G. Watson, H. Moosmüller, and W.P. Arnott (2004) Modeling reflectance and transmittance of quartz-fiber filter samples containing elemental carbon particles: Implications for thermal/optical analysis, J. Aerosol Sci., 35(6), 765-780. https://doi.org/10.1016/j.jaerosci.2003.12.005
  5. Cheng, Y., K.B. He, F.K. Duan, M. Zheng, Y.L. Ma, J.H. Tan, and Z.Y. Du (2010) Improved measurement of carbonaceous aerosol: evaluation of the sampling artifacts and inter-comparison of the thermal-optical analysis methods, Atmos. Chem. Phys., 10(17), 8533-8548. https://doi.org/10.5194/acp-10-8533-2010
  6. Cheng, Y., M. Zheng, K.B. He, Y. Chen, B. Yan, A.G. Russell, W. Shi, Z. Jiao, G. Sheng, J. Fu, and E.S. Edgerton (2011a) Comparison of two thermal-optical methods for the determination of organic carbon and elemental carbon: Results from the southeastern United States, Atmos. Environ., 45(11), 1913-1918. https://doi.org/10.1016/j.atmosenv.2011.01.036
  7. Cheng, Y., F.K. Duan, K.B. He, M. Zheng, Z.Y. Du, Y.L. Ma, and J.H. Tan (2011b) Intercomparison of thermaloptical methods for the determination of organic and elemental carbon: influences of aerosol composition and implications, Environ. Sci. Technol., 45(23), 10117-10123. https://doi.org/10.1021/es202649g
  8. Chow, J.C., J.G. Watson, D. Crow, D.H. Lowenthal, and T. Merrifield (2001) Comparison of IMPROVE and NIOSH carbon measurements, Aerosol Sci. Technol., 34(1), 23-34. https://doi.org/10.1080/02786820119073
  9. Chow, J.C., J.G. Watson, L.C. Pritchett, W.R. Pierson, C.A. Frazier, and R.G. Purcell (1993) The DRI thermal/ optical reflectance carbon analysis system: description, evaluation and applications in US air quality studies, Atmos. Environ., Part A. General Topics, 27(8), 1185-1201. https://doi.org/10.1016/0960-1686(93)90245-T
  10. Chow, J.C., J.G. Watson, L.W.A. Chen, W.P. Arnott, H. Moosmüller, and K. Fung (2004) Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols, Environ. Sci. Technol., 38(16), 4414-4422. https://doi.org/10.1021/es034936u
  11. Jacob, D.J. and D.A. Winner (2009) Effect of climate change on air quality, Atmos. Environ., 43(1), 51-63. https://doi.org/10.1016/j.atmosenv.2008.09.051
  12. Kaufman, Y., D. Tanre, and O. Boucher (2002) A Satellite View of Aerosols in the Climate System, Nature, 219: 215-223.
  13. Khan, B., M.D. Hays, C. Geron, and J. Jetter (2012) Differences in the OC/EC ratios that characterize ambient and source aerosols due to thermal-optical analysis, Aerosol Sci. Technol., 46(2), 127-137. https://doi.org/10.1080/02786826.2011.609194
  14. Kim, H., J. Jung, J. Lee, and S. Lee (2015) Seasonal characteristics of organic carbon and elemental carbon in $PM_{2.5}$ in Daejeon, J. Korean Soc. Atmos. Environ., 31(1), 28-40. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2015.31.1.028
  15. Laden, F., J. Schwartz, F.E. Speizer, and D.W. Dockery (2006) Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study, Am. J. Respir. Crit. Care Med., 173(6), 667-672. https://doi.org/10.1164/rccm.200503-443OC
  16. Lohmann, U. and J. Feichter (2005) Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5(3), 715-737. https://doi.org/10.5194/acp-5-715-2005
  17. Panteliadis, P., T. Hafkenscheid, B. Cary, E. Diapouli, A. Fischer, O. Favez, P. Quincey, M. Viana, R. Hitzenberger, R. Vecchi, D. Saraga, J. Sciare, J.L. Jaffrezo, A. John, J. Schwarz, M. Giannoni, J. Novak, A. Karanasiou, P. Fermo, and W. Maenhaut (2015) ECOC comparison exercise with identical thermal protocols after temperature offset correction-instrument diagnostics by in-depth evaluation of operational parameters. Atmos. Meas. Techn., 8(2), 779-792. https://doi.org/10.5194/amt-8-779-2015
  18. Park, S.S., M.S. Bae, J.J. Schauer, S.Y. Ryu, Y.J. Kim, S.Y. Cho, and S.J. Kim (2005) Evaluation of the TMO and TOT methods for OC and EC measurements and their characteristics in $PM_{2.5}$ at an urban site of Korea during ACE-Asia, Atmos. Environ., 39(28), 5101-5112. https://doi.org/10.1016/j.atmosenv.2005.05.016
  19. Peterson, M.R. and M.H. Richards (2002) Thermal-opticaltransmittance analysis for organic, elemental, carbonate, total carbon, and OCX2 in $PM_{2.5}$ by the EPA/NIOSH method, Proceedings of Symposium on Air Quality Measurement Methods and Technology-2002, Air & Waste Management Association, Pittsburgh, PA, 83-1-83-19.
  20. Piazzalunga, A., V. Bernardoni, P. Fermo, G. Valli, and R. Vecchi (2011) Technical Note: On the effect of water-soluble compounds removal on EC quantification by TOT analysis in urban aerosol samples, Atmos. Chem. Phys., 11(19), 10193-10203. https://doi.org/10.5194/acp-11-10193-2011
  21. Pope, C.A., J.B. Muhlestein, H.T. May, D.G. Renlund, J.L. Anderson, and B.D. Horne (2006) Ischemic heart disease events triggered by short-term exposure to fine particulate air pollution, Circulation, 114(23), 2443-2448. https://doi.org/10.1161/CIRCULATIONAHA.106.636977
  22. Schauer, J.J., B.T. Mader, J.T. Deminter, G. Heidemann, M.S. Bae, J.H. Seinfeld, R.C. Flagan, R.A. Cary, D. Smith, S. Howell, J.T. Kline, P. Quinn, T. Bates, B. Turpin, H.J. Lim, J.Z. Yu, H. Yang, and M.D. Keywood (2003) ACE-Asia intercomparison of a thermal- optical method for the determination of particle- phase organic and elemental carbon, Environ. Sci. Technol., 37(5), 993-1001. https://doi.org/10.1021/es020622f
  23. Schmid, H., L. Laskus, H.J. Abraham, U. Baltensperger, V. Lavanchy, M. Bizjak, P. Burba, H. Cachier, D. Crow, J. Chow, T. Gnauk, A. Even, H.M. ten Brink, K.P. Giesen, R. Hitzenberger, C. Hueglin, W. Maenhaut, C. Pio, A. Carvalho, J.P. Putaud, D. Toom-Sauntry, and H. Puxbaum (2001) Results of the "carbon conference" international aerosol carbon round robin test stage I, Atmos. Environ., 35(12), 2111-2121. https://doi.org/10.1016/S1352-2310(00)00493-3
  24. Slaughter, J.C., E. Kim, L. Sheppard, J.H. Sullivan, T.V. Larson, and C. Claiborn (2004) Association between particulate matter and emergency room visits, hospital admissions and mortality in Spokane, Washington, J. Expo. Sci. Environ. Epidemiol., 15(2), 153-159.
  25. Yu, J.Z., J. Xu, and H. Yang (2002) Charring characteristics of atmospheric organic particulate matter in thermal analysis, Environ. Sci. Technol., 36(4), 754-761. https://doi.org/10.1021/es015540q