Abstract
Corrosion is of greatest concern for metallic materials exposed to corrosive seawater or aggressive marine atmospheres. Marine structures and components made of metallic materials incur an initial cost and additional large costs for corrosion control and maintenance. There have been worldwide efforts to minimize marine corrosion and extend service life of the materials. It is believed that various factors are associated with corrosion of marine grade metallic materials, particularly the temperature of the solution affecting the corrosion rate by changing dissolved oxygen solubility and concentrations of chloride. In the present study, the electrochemical characteristics of S355ML steel are investigated to identify corrosion acceleration tendencies with changes in solution temperature under marine environments. It was found that increasing seawater temperature, promoted not only activation of chloride ion transfer, but also the formation of porous $Fe(OH)_3$ or $Fe_2O_3$, leading to the acceleration of corrosion.