DOI QR코드

DOI QR Code

Effect of flow velocity on corrosion rate and corrosion protection current of marine material

해양 금속재료의 부식속도와 방식전류에 미치는 유속의 영향

  • Lee, Seong Jong (Department of Power System Engineering, Kunsan National University) ;
  • Han, Min Su (Division of Marine Engineering, Mokpo National Maritime University) ;
  • Jang, Seok Ki (Division of Marine Engineering, Mokpo National Maritime University) ;
  • Kim, Seong Jong (Division of Marine Engineering, Mokpo National Maritime University)
  • 이승준 (군산대학교 동력기계시스템공학과) ;
  • 한민수 (목포해양대학교 기관시스템공학부) ;
  • 장석기 (목포해양대학교 기관시스템공학부) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2015.06.16
  • Accepted : 2015.10.08
  • Published : 2015.10.31

Abstract

In spite of highly advanced paint coating techniques, corrosion damage of marine metal and alloys increase more and more due to inherent micro-cracks and porosities in coatings formed during the coating process. Furthermore, flowing seawater conditions promote the breakdown of the protective oxide of the materials introducing more oxygen into marine environments, leading to the acceleration of corrosion. Various corrosion protection methods are available to prevent steel from marine corrosion. Cathodic protection is one of the useful corrosion protection methods by which the potential of the corroded metal is intentionally lowered to an immune state having the advantage of providing additional protection barriers to steel exposed to aqueous corrosion or soil corrosion, in addition to the coating. In the present investigation, the effect of flow velocity was examined for the determination of the optimum corrosion protection current density in cathodic protection as well as the corrosion rate of the steel. It is demonstrated from the result that the material corrosion under dynamic flowing conditions seems more prone to corrosion than under static conditions.

Keywords

References

  1. Y. T. Kho, J. Corros. Sci. Soc. of Kor., 27, 563 (1998).
  2. S. H. Kim and I. S. Lim, Kor. J. Met. Mater., 44, 108 (2006).
  3. D. S. Won, C. H. Hwang, Y. S. Park and J. C. Kim, Corros. Sci. Tech., 13, 24 (1990).
  4. H. H. Huang and T. H. Chuang, Mater. Sci. Eng. A, 292, 90 (2000). https://doi.org/10.1016/S0921-5093(00)01021-2
  5. S. Giddey, B. Cherry, F. Lawson and M. Forsyth, Corros. Sci., 43, 1497 (2001). https://doi.org/10.1016/S0010-938X(00)00150-5
  6. K. Denpo and H. Ogawa, Corrosion, 49, 442 (1993). https://doi.org/10.5006/1.3316070
  7. G. Sahoo, A. Deva, B. Singh and A Sexena, J. Met. Mater. Miner., 24, 1 (2014).
  8. Y. S. Kim, S. H. Hong, S. Y. Park, H. Y. Chang, K. C. Sohn and Y. R. Yu, Corros. Sci. Tech., 30, 196 (2001).
  9. D. A. Jones, Corrosion, 42, 430 (1986). https://doi.org/10.5006/1.3584925

Cited by

  1. Electrochemical Damage Characteristics of Anodized 5083 Aluminum Alloy with Flow Rate in Seawater vol.49, pp.4, 2016, https://doi.org/10.5695/JKISE.2016.49.4.349
  2. 해수 유속 변화에 따른 Al5052-O와 Al6061-T6 알루미늄 합금의 침식부식 특성 vol.18, pp.6, 2019, https://doi.org/10.14773/cst.2019.18.6.292
  3. 해수 환경에서 Al5083-H321 알루미늄 합금의 침식부식 손상에 미치는 유속의 영향과 손상 메카니즘 vol.19, pp.3, 2020, https://doi.org/10.14773/cst.2020.19.3.115
  4. 선박용 AA5083-H321의 유속에 의한 침식손상 방지를 위한 최적 음극방식전위 규명 vol.19, pp.6, 2015, https://doi.org/10.14773/cst.2020.19.6.288
  5. 경질양극산화된 5083-H321 알루미늄 합금의 해수 내 액적충격침식부식 손상 연구 vol.19, pp.6, 2015, https://doi.org/10.14773/cst.2020.19.6.310