DOI QR코드

DOI QR Code

핵융합 배가스 중 수소 회수를 위한 촉매반응 특성 연구

Study on the Characteristics of Catalyst Reaction for Hydrogen Recovery from Nuclear Fusion Exhaust Gas

  • 정우찬 (대성산업가스(주) 초저온연구소) ;
  • 정필갑 (대성산업가스(주) 초저온연구소) ;
  • 김정원 (대성산업가스(주) 초저온연구소) ;
  • 문흥만 (대성산업가스(주) 초저온연구소)
  • JUNG, WOOCHAN (Daesung Cryogenic Research Institute, Daesung Industrial Gases Co., Ltd.) ;
  • JUNG, PILKAP (Daesung Cryogenic Research Institute, Daesung Industrial Gases Co., Ltd.) ;
  • KIM, JOUNGWON (Daesung Cryogenic Research Institute, Daesung Industrial Gases Co., Ltd.) ;
  • MOON, HUNGMAN (Daesung Cryogenic Research Institute, Daesung Industrial Gases Co., Ltd.)
  • 투고 : 2015.07.30
  • 심사 : 2015.10.30
  • 발행 : 2015.10.30

초록

In D-T fusion reaction, $D_2$ (duterium) and $T_2$(tritium) are used as fuel gas. The exhaust gas of nuclear fusion includes hydrogen isotopes $Q_2$ (Q means H, D or T), tritiated components ($CQ_4$ and $Q_2O$), CO, $CO_2$, etc. All of hydrogen isotopes should be recovered before released to the atmosphere. This study focused on the recovery of hydrogen isotopes from $CQ_4$ and $Q_2O$. Two kinds of experiments were conducted to investigate the catalytic reaction characteristics of SMR (Steam Methane Reforming) and WGS (Water Gas Shift) reactions using Pt catalyst. First test was performed to convert $CH_4$ into $H_2$ using 6% $CH_4$, 6% CO/Ar feed gas. In the other test, 100% CO gas was used to convert $H_2O$ into $H_2$ at various reaction conditions (reaction temperature, S/C ratio, GHSV). As a result of the first test, $CH_4$ and CO conversion were 41.6%, 57.8% respectively at $600^{\circ}C$, S/C ratio 3, GHSV $2000hr^{-1}$. And CO conversion was 72% at $400^{\circ}C$, S/C ratio 0.95, GHSV $333hr^{-1}$ in the second test.

키워드

참고문헌

  1. S. H. Yun, S. Y. Cho, H. G. Lee, and K. J. Jung, "ITER project - introduction of tritium fuel cycle technology", News & Information for Chemical Engineers, Vol. 33, No. 1, 2015, pp. 28-33.
  2. W. C. Jung, P. K. Jung, J. W. Kim, and H. M. Moon, "Technology for Hydrogen isotopes recovery from nuclear fusion exhaust gas", News & Information for Chemical Engineers, Vol. 33, No. 1, 2015, pp. 43-49.
  3. K. M. Song, S. H. Sohn, H. S. Chung, S. H. Yun, and K. J. Jung, "Tritium Fuel Cycle of the International Thermonuclear Experimental Reactor", Korean Chem. Eng. Res., Vol. 50, No. 4, 2012, pp. 595-603. https://doi.org/10.9713/kcer.2012.50.4.595
  4. S. H. Yun, M. H. Chang, H. G. Kang, C. S. Kim, S. Y. Cho, K. J. Jung, H. S. Chung, and K. M. Song, "Tritium Fuel Cycle Technology of ITER Project", Trans. of the Korean Hydrogen and New Energy Society, 2012, Vol. 23, No. 1, pp. 56-64. https://doi.org/10.7316/khnes.2012.23.1.056
  5. M. Glugla, R. Lasser, L. Dorr, D. K. Murdoch, R. Haange, and H. Yoshida, "The inner deuterium /tritium fuel cycle of ITER", Fusion Engineering and Design, Vol. 69, 2003, pp. 39-43. https://doi.org/10.1016/S0920-3796(03)00231-X
  6. Y. C. Bak, and K. J. Cho, "Status for the Technology of Hydrogen Production from Natural Gas", Korean Chem. Eng. Res., Vol. 43, No. 3, 2005, pp. 344-351.
  7. D. J. Moon, and B. G. Lee, "R&D Trends and Unit Processes of Hydrogen Station", Korean Chem. Eng. Res., Vol. 43, No. 3, 2005, pp. 331-343.