DOI QR코드

DOI QR Code

구리 프탈로시아닌으로 표면처리된 흑연 음극의 속도특성 및 저온성능 개선

Improvement of Rate Capability and Low-temperature Performances of Graphite Negative Electrode by Surface Treatment with Copper Phthalocyanine

  • 정선형 (서울대학교 화학생물공학부 에너지환경화학융합기술전공) ;
  • 박상진 (서울대학교 화학생물공학부 에너지환경화학융합기술전공) ;
  • 류지헌 (한국산업기술대학교 지식기술기반 에너지대학원) ;
  • 오승모 (서울대학교 화학생물공학부 에너지환경화학융합기술전공)
  • Jurng, Sunhyung (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University) ;
  • Park, Sangjin (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • Oh, Seung M. (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University)
  • 투고 : 2015.07.17
  • 심사 : 2015.08.26
  • 발행 : 2015.08.31

초록

흑연 분말을 프탈로시아닌 또는 구리 프탈로시아닌과 함께 비활성 분위기에서 각각 열처리하여 표면처리를 진행하였고, 이의 속도특성과 저온 작동특성을 조사하였다. 표면처리 후 흑연 분말의 표면에 비정질 탄소와 구리의 코팅 층이 균일하게 형성되었다. 표면처리를 통하여 흑연 전극의 속도특성이 개선되는 것을 확인하였는데, 특히 구리 프탈로시아닌으로 처리한 경우 속도특성의 향상이 두드러졌다. 흑연 전극의 저항을 교류 임피던스와 펄스 저항측정법을 활용하여 조사하였는데, 구리 프탈로시아닌으로 처리된 흑연 전극의 경우가 저항이 가장 작았다. 프탈로시아닌으로 부터 유도된 비정질 탄소 층이 리튬이온의 확산을 용이하게 하고, 구리 프탈로시아닌으로부터 유도된 금속상태의 구리는 전자 전도도를 증가시키기 때문에 저항을 감소시키는 것으로 판단된다.

The rate capability and low-temperature characteristics of graphite electrode are investigated after surface treatment with copper phthalocyanine (CuPc) or phthalocyanine (Pc). Uniform coating layers comprising amorphous carbon or copper are generated after the treatment. The rate performance of graphite electrodes is enhanced by the surface treatment, which is more prominent with CuPc. The resistance of the graphite electrode estimated from electrochemical impedance spectroscopy and pulse resistance measurement is the smallest for the CuPc-treated graphite. It is likely that the amorphous carbon layer formed by the decomposition of Pc facilitates $Li^+$ diffusion and the metallic copper derived from CuPc improves the electrical conductivity of the graphite electrode.

키워드

참고문헌

  1. DOE, Energy storage R&D annual progress report, 81, (2011).
  2. S. S. Zhang, K. Xu and T. R. Jow, 'Electrochemical impedance study on the low temperature of Li-ion batteries' Electrochim Acta, 49, 1057 (2004). https://doi.org/10.1016/j.electacta.2003.10.016
  3. M. C. Smart, B. V. Ratnakumar and S. Surampudi, 'Use of organic esters as cosolvents in electrolytes for lithiumion batteries with improved low temperature performance' J Electrochem Soc, 149, A361 (2002). https://doi.org/10.1149/1.1453407
  4. F. Nobili, S. Dsoke, T. Mecozzi and R. Marassi, 'Metaloxidized graphite composite electrodes for lithium-ion batteries' Electrochim Acta, 51, 536 (2005). https://doi.org/10.1016/j.electacta.2005.05.012
  5. J. Li, C. F. Yuan, Z. H. Guo, Z. A. Zhang, Y. Q. Lai and J. Liu, 'Limiting factors for low-temperature performance of electrolytes in LiFePO4/Li and graphite/Li half cells' Electrochim Acta, 59, 69 (2012). https://doi.org/10.1016/j.electacta.2011.10.041
  6. M. C. Smart, B. V. Ratnakumar, K. B. Chin and L. D. Whitcanack, 'Lithium-Ion Electrolytes Containing Ester Cosolvents for Improved Low Temperature Performance' J. Electrochem Soc., 157, A1361 (2010). https://doi.org/10.1149/1.3501236
  7. B. X. Liu, B. Li and S. Y. Guan, 'Effect of Fluoroethylene Carbonate Additive on Low Temperature Performance of Li-Ion Batteries' Electrochem Solid St, 15, A77 (2012). https://doi.org/10.1149/2.027206esl
  8. S. S. Zhang, 'A review on electrolyte additives for lithium-ion batteries' J. Power Sources, 162, 1379 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.074
  9. C. Dent and R. Linstead, '215. Phthalocyanines. Part IV. Copper phthalocyanines' Journal of the Chemical Society (Resumed), 1027 (1934). https://doi.org/10.1039/jr9340001027
  10. T. Ghodselahi, M. A. Vesaghi, A. Shafiekhani, A. Baghizadeh and M. Lameii, 'XPS study of the Cu@Cu2O core-shell nanoparticles' Appl. Surf. Sci., 255, 2730 (2008). https://doi.org/10.1016/j.apsusc.2008.08.110
  11. J. Zhang, S. Xie, X. Wei, Y. J. Xiang and C. H. Chen, 'Lithium insertion in naturally surface-oxidized copper' J. Power Sources, 137, 88 (2004). https://doi.org/10.1016/j.jpowsour.2004.05.041
  12. S. Venkatachalam, H. Zhu, C. Masarapu, K. Hung, Z. Liu, K. Suenaga, et al., 'In-situ formation of sandwiched structures of nanotube/CuxOy/Cu composites for lithium battery applications' ACS Nano, 3, 2177 (2009). https://doi.org/10.1021/nn900432u
  13. S. D. Seo, Y. H. Jin, S. H. Lee, H. W. Shim and D. W. Kim, 'Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes' Nanoscale Res. Lett., 6, (2011).
  14. M. Mancini, F. Nobili, S. Dsoke, F. D. Amico, R. Tossici, F. Croce, et al., 'Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper' J. Power Sources, 190, 141 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.084
  15. F. Nobili, S. Dsoke, M. Mancini and R. Marassi, 'Interfacial Properties of Copper-coated Graphite Electrodes: Coating Thickness Dependence' Fuel Cells, 9, 264 (2009). https://doi.org/10.1002/fuce.200800087
  16. C. K. Huang, J. S. Sakamoto, J. Wolfenstine and S. Surampudi, 'The limits of low-temperature performance of Li-ion cells' J. Electrochem Soc., 147, 2893 (2000). https://doi.org/10.1149/1.1393622
  17. D. Aurbach, M. D. Levi and E. Levi, 'A review on the solid-state ionics of electrochemical intercalation processes: How to interpret properly their electrochemical response' Solid State Ionics, 179, 742 (2008). https://doi.org/10.1016/j.ssi.2007.12.070
  18. C. Delacourt, P. L. Ridgway, V. Srinivasan and V. Battaglia, 'Measurements and Simulations of Electrochemical Impedance Spectroscopy of a Three-Electrode Coin Cell Design for Li-Ion Cell Testing' J. Electrochem. Soc., 161, A1253 (2014). https://doi.org/10.1149/2.0311409jes