DOI QR코드

DOI QR Code

Vitamin C Stimulates Epidermal Ceramide Production by Regulating Its Metabolic Enzymes

  • Kim, Kun Pyo (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Shin, Kyong-Oh (College of Pharmacy and MRC, Chungbuk National University) ;
  • Park, Kyungho (Department of Dermatology, Northern California Institute for Research and Education (NCIRE)-VA Medical Center, University of California, San Francisco(UCSF)) ;
  • Yun, Hye Jeong (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Mann, Shivtaj (Nova Southeastern College of Medicine, Fort Lauderdale) ;
  • Lee, Yong Moon (College of Pharmacy and MRC, Chungbuk National University) ;
  • Cho, Yunhi (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University)
  • Received : 2015.04.22
  • Accepted : 2015.06.02
  • Published : 2015.11.01

Abstract

Ceramide is the most abundant lipid in the epidermis and plays a critical role in maintaining epidermal barrier function. Overall ceramide content in keratinocyte increases in parallel with differentiation, which is initiated by supplementation of calcium and/or vitamin C. However, the role of metabolic enzymes responsible for ceramide generation in response to vitamin C is still unclear. Here, we investigated whether vitamin C alters epidermal ceramide content by regulating the expression and/or activity of its metabolic enzymes. When human keratinocytes were grown in 1.2 mM calcium with vitamin C ($50{\mu}g/ml$) for 11 days, bulk ceramide content significantly increased in conjunction with terminal differentiation of keratinocytes as compared to vehicle controls (1.2 mM calcium alone). Synthesis of the ceramide fractions was enhanced by increased de novo ceramide synthesis pathway via serine palmitoyltransferase and ceramide synthase activations. Moreover, sphingosine-1-phosphate (S1P) hydrolysis pathway by action of S1P phosphatase was also stimulated by vitamin C supplementation, contributing, in part, to enhanced ceramide production. However, activity of sphingomyelinase, a hydrolase enzyme that converts sphingomyelin to ceramide, remained unaltered. Taken together, we demonstrate that vitamin C stimulates ceramide production in keratinocytes by modulating ceramide metabolicrelated enzymes, and as a result, could improve overall epidermal barrier function.

Keywords

References

  1. Eichner, R., Bonitz, P. and Sun, T. T. (1984) Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J. Cell Biol. 98, 1388-1396. https://doi.org/10.1083/jcb.98.4.1388
  2. Elias, P. M. (2005) Stratum corneum defensive functions: an integrated view. J. Invest. Dermatol. 125, 183-200. https://doi.org/10.1111/j.0022-202X.2005.23668.x
  3. Elias, P. M. and Menon, G. K. (1991) Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv. Lipid Res. 24, 1-26.
  4. Giussani, P., Maceyka, M., Le Stunff, H., Mikami, A., Lepine, S., Wang, E., Kelly, S., Merrill, A. H., Jr., Milstien, S. and Spiegel, S. (2006) Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic reticulum-to-golgi trafficking of ceramide. Mol. Cell. Biol. 26, 5055-5069. https://doi.org/10.1128/MCB.02107-05
  5. Holleran, W. M., Feingold, K. R., Man, M. Q., Gao, W. N., Lee, J. M. and Elias, P. M. (1991) Regulation of epidermal sphingolipid synthesis by permeability barrier function. J. Lipid Res. 32, 1151-1158.
  6. Holleran, W. M., Williams, M. L., Gao, W. N. and Elias, P. M. (1990) Serine-palmitoyl transferase activity in cultured human keratinocytes. J. Lipid Res. 31, 1655-1661.
  7. Imokawa, G., Kuno, H. and Kawai, M. (1991) Stratum corneum lipids serve as a bound-water modulator. J. Invest. Dermatol. 96, 845-851.
  8. Johnson, K. R., Johnson, K. Y., Becker, K. P., Bielawski, J., Mao, C. and Obeid, L. M. (2003) Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. J. Biol. Chem. 278, 34541-34547. https://doi.org/10.1074/jbc.M301741200
  9. Kim, H. J., Qiao, Q., Toop, H. D., Morris, J. C. and Don, A. S. (2012) A fluorescent assay for ceramide synthase activity. J. Lipid Res. 53, 1701-1707. https://doi.org/10.1194/jlr.D025627
  10. Kim, J., Yun, H. and Cho, Y. (2011) Analysis of ceramide metabolites in differentiating epidermal keratinocytes treated with calcium or vitamin C. Nutr. Res. Pract. 5, 396-403. https://doi.org/10.4162/nrp.2011.5.5.396
  11. Le Stunff, H., Galve-Roperh, I., Peterson, C., Milstien, S. and Spiegel, S. (2002) Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. J. Cell Biol. 158, 1039-1049. https://doi.org/10.1083/jcb.200203123
  12. Le Stunff, H., Milstien, S. and Spiegel, S. (2004) Generation and metabolism of bioactive sphingosine-1-phosphate. J. Cell. Biochem. 92, 882-899. https://doi.org/10.1002/jcb.20097
  13. Loidl, A., Claus, R., Deigner, H. P. and Hermetter, A. (2002) High-precision fluorescence assay for sphingomyelinase activity of isolated enzymes and cell lysates. J. Lipid Res. 43, 815-823.
  14. Mehrel, T., Hohl, D., Rothnagel, J. A., Longley, M. A., Bundman, D., Cheng, C., Lichti, U., Bisher, M. E., Steven, A. C., Steinert, P. M. and et al. (1990) Identification of a major keratinocyte cell envelope protein, loricrin. Cell 61, 1103-1112. https://doi.org/10.1016/0092-8674(90)90073-N
  15. Motta, S., Monti, M., Sesana, S., Mellesi, L., Ghidoni, R. and Caputo, R. (1994) Abnormality of water barrier function in psoriasis. Role of ceramide fractions. Arch. Dermatol. 130, 452-456. https://doi.org/10.1001/archderm.1994.01690040056007
  16. Park, K., Elias, P. M., Hupe, M., Borkowski, A. W., Gallo, R. L., Shin, K. O., Lee, Y. M., Holleran, W. M. and Uchida, Y. (2013a) Resveratrol stimulates sphingosine-1-phosphate signaling of cathelicidin production. J. Invest. Dermatol. 133, 1942-1949. https://doi.org/10.1038/jid.2013.133
  17. Park, K., Elias, P. M., Oda, Y., Mackenzie, D., Mauro, T., Holleran, W. M. and Uchida, Y. (2011) Regulation of cathelicidin antimicrobial peptide expression by an endoplasmic reticulum (ER) stress signaling, vitamin D receptor-independent pathway. j. Biol. Chem. 286, 34121-34130. https://doi.org/10.1074/jbc.M111.250431
  18. Park, K., Elias, P. M., Shin, K. O., Lee, Y. M., Hupe, M., Borkowski, A. W., Gallo, R. L., Saba, J., Holleran, W. M. and Uchida, Y. (2013b) A novel role of a lipid species, sphingosine-1-phosphate, in epithelial innate immunity. Mol. Cell. Biol. 33, 752-762. https://doi.org/10.1128/MCB.01103-12
  19. Rutti, M. F., Richard, S., Penno, A., von Eckardstein, A. and Hornemann, T. (2009) An improved method to determine serine palmitoyltransferase activity. J. Lipid Res. 50, 1237-1244. https://doi.org/10.1194/jlr.D900001-JLR200
  20. Shin, K. O., Park, M. Y., Seo, C. H., Lee, Y. I., Kim, H. S., Yoo, H. S., Hong, J. T., Jung, J. K. and Lee, Y. M. (2012a) Terpene alcohols inhibit de novo sphingolipid biosynthesis. Planta Med. 78, 434-439. https://doi.org/10.1055/s-0031-1298155
  21. Shin, K. O., Park, N. Y., Seo, C. H., Hong, S. P., Oh, K. W., Hong, J. T., Han, S. K. and Lee, Y. M. (2012b) Inhibition of sphingolipid metabolism enhances resveratrol chemotherapy in human gastric cancer cells. Biomol. Ther. 20, 470-476. https://doi.org/10.4062/biomolther.2012.20.5.470
  22. Simon, M. and Green, H. (1985) Enzymatic cross-linking of involucrin and other proteins by keratinocyte particulates in vitro. Cell 40, 677-683. https://doi.org/10.1016/0092-8674(85)90216-8
  23. Uchida, Y. (2014) Ceramide signaling in mammalian epidermis. Biochim. Biophys. Acta 1841, 453-462. https://doi.org/10.1016/j.bbalip.2013.09.003
  24. Uchida, Y., Behne, M., Quiec, D., Elias, P. M. and Holleran, W. M. (2001a) Vitamin C stimulates sphingolipid production and markers of barrier formation in submerged human keratinocyte cultures. J. Invest. Dermatol. 117, 1307-1313. https://doi.org/10.1046/j.0022-202x.2001.01555.x
  25. Uchida, Y., Hara, M. and Hamanaka, S. (2001b) [Stratum corneum ceramides: their function and origins]. Seikagaku 73, 268-272.
  26. Uchida, Y., Hara, M., Nishio, H., Sidransky, E., Inoue, S., Otsuka, F., Suzuki, A., Elias, P. M., Holleran, W. M. and Hamanaka, S. (2000) Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. J. Lipid Res. 41, 2071-2082.
  27. Wertz, P. W. and Downing, D. T. (1986) Covalent attachment of omega-hydroxyacid derivatives to epidermal macromolecules: a preliminary characterization. Biochem. Biophys. Res. Commun. 137, 992-997. https://doi.org/10.1016/0006-291X(86)90323-2

Cited by

  1. Isorhamnetin Inhibits Reactive Oxygen Species-Dependent Hypoxia Inducible Factor (HIF)-1α Accumulation vol.39, pp.11, 2016, https://doi.org/10.1248/bpb.b16-00414
  2. The Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo vol.18, pp.8, 2017, https://doi.org/10.3390/ijms18081814
  3. The Roles of Vitamin C in Skin Health vol.9, pp.8, 2017, https://doi.org/10.3390/nu9080866
  4. Assay to measure sphingomyelinase and ceramidase activities efficiently and safely vol.1481, 2017, https://doi.org/10.1016/j.chroma.2016.12.033
  5. Vitamin C and Immune Function vol.9, pp.11, 2017, https://doi.org/10.3390/nu9111211
  6. Phytosphingosine Increases Biosynthesis of Phytoceramide by Uniquely Stimulating the Expression of Dihydroceramide C4-desaturase (DES2) in Cultured Human Keratinocytes vol.53, pp.9, 2018, https://doi.org/10.1002/lipd.12097
  7. Hyaluronan metabolism enhanced during epidermal differentiation is suppressed by vitamin C vol.179, pp.3, 2018, https://doi.org/10.1111/bjd.16423
  8. Reuniting overnutrition and undernutrition, macronutrients, and micronutrients pp.15207552, 2018, https://doi.org/10.1002/dmrr.3072
  9. Role of Vitamin C in Skin Diseases vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.00819
  10. RETRACTED ARTICLE: Hispidulin mediates apoptosis in human renal cell carcinoma by inducing ceramide accumulation vol.38, pp.12, 2015, https://doi.org/10.1038/aps.2017.154
  11. Assessment of the Effectiveness of Vitamin Supplement in Treating Eczema: A Systematic Review and Meta-Analysis vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/6956034
  12. Pharmacotherapy: Its impact on morphofunctional characteristics of the epidermal barrier vol.95, pp.1, 2015, https://doi.org/10.25208/0042-4609-2019-95-1-59-76
  13. Dietary Patterns Associated with Sebum Content, Skin Hydration and pH, and Their Sex-Dependent Differences in Healthy Korean Adults vol.11, pp.3, 2015, https://doi.org/10.3390/nu11030619
  14. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis vol.12, pp.6, 2015, https://doi.org/10.3390/nu12061562
  15. Effects of Natural Antioxidants on Phospholipid and Ceramide Profiles of 3D-Cultured Skin Fibroblasts Exposed to UVA or UVB Radiation vol.10, pp.4, 2015, https://doi.org/10.3390/antiox10040578
  16. N-Palmitoyl Serinol Stimulates Ceramide Production through a CB1-Dependent Mechanism in In Vitro Model of Skin Inflammation vol.22, pp.15, 2015, https://doi.org/10.3390/ijms22158302
  17. Facile Method for Specifically Sensing Sphingomyelinase in Cells and Human Urine Based on a Ratiometric Fluorescent Nanoliposome Probe vol.93, pp.34, 2015, https://doi.org/10.1021/acs.analchem.1c02197
  18. The Role of Vitamin C in Cancer Prevention and Therapy: A Literature Review vol.10, pp.12, 2015, https://doi.org/10.3390/antiox10121894
  19. Performance of Oleic Acid and Soybean Oil in the Preparation of Oil-in-Water Microemulsions for Encapsulating a Highly Hydrophobic Molecule vol.5, pp.4, 2015, https://doi.org/10.3390/colloids5040050