Acknowledgement
Supported by : Ministry for Health, Welfare and Family Affairs, National Research Foundation of Korea (NRF)
References
- Craig J. Complex diseases: research and applications. Nat Educ 2008;1:184.
- Chuang HY, Hofree M, Ideker T. A decade of systems biology. Annu Rev Cell Dev Biol 2010;26:721-744. https://doi.org/10.1146/annurev-cellbio-100109-104122
- Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011;12:56-68. https://doi.org/10.1038/nrg2918
- Ku CS, Loy EY, Pawitan Y, Chia KS. The pursuit of genome-wide association studies: where are we now? J Hum Genet 2010;55:195-206. https://doi.org/10.1038/jhg.2010.19
- Ormond KE, Wheeler MT, Hudgins L, et al. Challenges in the clinical application of whole-genome sequencing. Lancet 2010;375:1749-1751. https://doi.org/10.1016/S0140-6736(10)60599-5
- Wang J, Zhang Y, Marian C, Ressom HW. Identification of aberrant pathways and network activities from high-throughput data. Brief Bioinform 2012;13:406-419. https://doi.org/10.1093/bib/bbs001
- Altman RB. Translational bioinformatics: linking the molecular world to the clinical world. Clin Pharmacol Ther 2012;91:994-1000. https://doi.org/10.1038/clpt.2012.49
- Likic VA, McConville MJ, Lithgow T, Bacic A. Systems biology: the next frontier for bioinformatics. Adv Bioinformatics 2010;2010:268925.
- Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature 1999;402(6761 Suppl):C47-C52. https://doi.org/10.1038/35011540
- Koutsogiannouli E, Papavassiliou AG, Papanikolaou NA. Complexity in cancer biology: is systems biology the answer? Cancer Med 2013;2:164-177. https://doi.org/10.1002/cam4.62
- Furlong LI. Human diseases through the lens of network biology. Trends Genet 2013;29:150-159. https://doi.org/10.1016/j.tig.2012.11.004
- Sarkar IN, Butte AJ, Lussier YA, Tarczy-Hornoch P, Ohno-Machado L. Translational bioinformatics: linking knowledge across biological and clinical realms. J Am Med Inform Assoc 2011;18:354-357. https://doi.org/10.1136/amiajnl-2011-000245
- MacLellan WR, Wang Y, Lusis AJ. Systems-based approaches to cardiovascular disease. Nat Rev Cardiol 2012;9:172-184. https://doi.org/10.1038/nrcardio.2011.208
- You S, Cho CS, Lee I, Hood L, Hwang D, Kim WU. A systems approach to rheumatoid arthritis. PLoS One 2012;7:e51508. https://doi.org/10.1371/journal.pone.0051508
- You S, Yoo SA, Choi S, et al. Identification of key regu lators for the migration and invasion of rheumatoid synoviocytes through a systems approach. Proc Natl Acad Sci U S A 2014;111:550-555. https://doi.org/10.1073/pnas.1311239111
- Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL. The human disease network. Proc Natl Acad Sci U S A 2007;104:8685-8690. https://doi.org/10.1073/pnas.0701361104
- Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M. Drug-target network. Nat Biotechnol 2007;25:1119-1126. https://doi.org/10.1038/nbt1338
- Bauer-Mehren A, Bundschus M, Rautschka M, Mayer MA, Sanz F, Furlong LI. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases. PLoS One 2011;6:e20284. https://doi.org/10.1371/journal.pone.0020284
- Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, Butte AJ. Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol 2010;6:e1000662. https://doi.org/10.1371/journal.pcbi.1000662
- Emig D, Ivliev A, Pustovalova O, et al. Drug target prediction and repositioning using an integrated network-based approach. PLoS One 2013;8:e60618. https://doi.org/10.1371/journal.pone.0060618
- Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P. Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther 2013;93:335-341. https://doi.org/10.1038/clpt.2013.1
- Stumpf MP, Thorne T, de Silva E, et al. Estimating the size of the human interactome. Proc Natl Acad Sci U S A 2008;105:6959-6964. https://doi.org/10.1073/pnas.0708078105
- Venkatesan K, Rual JF, Vazquez A, et al. An empirical framework for binary interactome mapping. Nat Methods 2009;6:83-90. https://doi.org/10.1038/nmeth.1280
- Schwanhausser B, Busse D, Li N, et al. Global quantification of mammalian gene expression control. Nature 2011;473:337-342. https://doi.org/10.1038/nature10098
- International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004;431:931-945. https://doi.org/10.1038/nature03001
- Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 2004;8:33-41. https://doi.org/10.1016/j.cbpa.2003.12.009
- Altelaar AF, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 2013;14:35-48. https://doi.org/10.1038/nrg3356
- Chiche L, Jourde-Chiche N, Pascual V, Chaussabel D. Current perspectives on systems immunology approaches to rheumatic diseases. Arthritis Rheum 2013;65:1407-1417. https://doi.org/10.1002/art.37909
- Sirota M, Butte AJ. The role of bioinformatics in studying rheumatic and autoimmune disorders. Nat Rev Rheumatol 2011;7:489-494. https://doi.org/10.1038/nrrheum.2011.87
- Altman RB. Introduction to translational bioinformatics collection. PLoS Comput Biol 2012;8:e1002796. https://doi.org/10.1371/journal.pcbi.1002796
- Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet 2001;358:903-911. https://doi.org/10.1016/S0140-6736(01)06075-5
- Moelants EA, Mortier A, Van Damme J, Proost P. Regulation of TNF-alpha with a focus on rheumatoid arthritis. Immunol Cell Biol 2013;91:393-401. https://doi.org/10.1038/icb.2013.15
- Rubbert-Roth A, Finckh A. Treatment options in patients with rheumatoid arthritis failing initial TNF inhibitor therapy: a critical review. Arthritis Res Ther 2009;11 Suppl 1:S1. https://doi.org/10.1186/ar2666
- Tanaka Y. Next stage of RA treatment: is TNF inhibitor-free remission a possible treatment goal? Ann Rheum Dis 2013;72 Suppl 2:ii124-ii127. https://doi.org/10.1136/annrheumdis-2012-202350
- Lipsky PE, van der Heijde DM, St Clair EW, et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis: anti-tumor necrosis factor trial in rheumatoid arthritis with Concomitant Therapy Study Group. N Engl J Med 2000;343:1594-1602. https://doi.org/10.1056/NEJM200011303432202
- Weinblatt ME, Keystone EC, Furst DE, et al. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum 2003;48:35-45. https://doi.org/10.1002/art.10697
- Weinblatt ME, Kremer JM, Bankhurst AD, et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med 1999;340:253-259. https://doi.org/10.1056/NEJM199901283400401
- Finckh A, Simard JF, Gabay C, Guerne PA; SCQM physicians. Evidence for differential acquired drug resistance to anti-tumour necrosis factor agents in rheumatoid arthritis. Ann Rheum Dis 2006;65:746-752. https://doi.org/10.1136/ard.2005.045062
- Prince FH, Bykerk VP, Shadick NA, et al. Sustained rheumatoid arthritis remission is uncommon in clinical practice. Arthritis Res Ther 2012;14:R68. https://doi.org/10.1186/ar3785
- Klarenbeek NB, van der Kooij SM, Guler-Yuksel M, et al. Discontinuing treatment in patients with rheumatoid arthritis in sustained clinical remission: exploratory analyses from the BeSt study. Ann Rheum Dis 2011;70:315-319. https://doi.org/10.1136/ard.2010.136556
- Aguilar-Lozano L, Castillo-Ortiz JD, Vargas-Serafin C, et al. Sustained clinical remission and rate of relapse after tocilizumab withdrawal in patients with rheumatoid arthritis. J Rheumatol 2013;40:1069-1073. https://doi.org/10.3899/jrheum.121427
- Toonen EJ, Barrera P, Radstake TR, et al. Gene expression profiling in rheumatoid arthritis: current concepts and future directions. Ann Rheum Dis 2008;67:1663-1669. https://doi.org/10.1136/ard.2007.076588
- Viatte S, Plant D, Raychaudhuri S. Genetics and epigenetics of rheumatoid arthritis. Nat Rev Rheumatol 2013;9:141-153. https://doi.org/10.1038/nrrheum.2012.237
- Nakaoka H, Cui T, Tajima A, et al. A systems genetics approach provides a bridge from discovered genetic variants to biological pathways in rheumatoid arthritis. PLoS One 2011;6:e25389. https://doi.org/10.1371/journal.pone.0025389
- Sakaguchi N, Takahashi T, Hata H, et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 2003;426:454-460. https://doi.org/10.1038/nature02119
- Xing H, McDonagh PD, Bienkowska J, et al. Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis. PLoS Comput Biol 2011;7:e1001105. https://doi.org/10.1371/journal.pcbi.1001105
- Schiff M. Abatacept treatment for rheumatoid arthritis. Rheumatology (Oxford) 2011;50:437-449. https://doi.org/10.1093/rheumatology/keq287
- Keystone E, Burmester GR, Furie R, et al. Improvement in patient-reported outcomes in a rituximab trial in patients with severe rheumatoid arthritis refractory to anti-tumor necrosis factor therapy. Arthritis Rheum 2008;59:785-793. https://doi.org/10.1002/art.23715
- Yoon HJ, You S, Yoo SA, et al. NF-AT5 is a critical regulator of inf lammatory arthritis. Arthritis Rheum 2011;63:1843-1852. https://doi.org/10.1002/art.30229
- Wu G, Zhu L, Dent JE, Nardini C. A comprehensive molecular interaction map for rheumatoid arthritis. PLoS One 2010;5:e10137. https://doi.org/10.1371/journal.pone.0010137
- Liu Z, Davidson A. Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat Med 2012;18:871-882. https://doi.org/10.1038/nm.2752
- Baechler EC, Batliwalla FM, Karypis G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 2003;100:2610-2615. https://doi.org/10.1073/pnas.0337679100
- Bennett L, Palucka AK, Arce E, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 2003;197:711-723. https://doi.org/10.1084/jem.20021553
- Feng X, Wu H, Grossman JM, et al. Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis Rheum 2006;54:2951-2962. https://doi.org/10.1002/art.22044
- Kirou KA, Lee C, George S, Louca K, Peterson MG, Crow MK. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum 2005;52:1491-1503. https://doi.org/10.1002/art.21031
- Landolt-Marticorena C, Bonventi G, Lubovich A, et al. Lack of association between the interferon-alpha signature and longitudinal changes in disease activity in systemic lupus erythematosus. Ann Rheum Dis 2009;68:1440-1446. https://doi.org/10.1136/ard.2008.093146
- Nikpour M, Dempsey AA, Urowitz MB, Gladman DD, Barnes DA. Association of a gene expression prof ile from whole blood with disease activity in systemic lupus erythaematosus. Ann Rheum Dis 2008;67:1069-1075. https://doi.org/10.1136/ard.2007.074765
- Petri M, Singh S, Tesfasyone H, et al. Longitudinal expression of type I interferon responsive genes in systemic lupus erythematosus. Lupus 2009;18:980-989. https://doi.org/10.1177/0961203309105529
- Chaussabel D, Quinn C, Shen J, et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 2008;29:150-164. https://doi.org/10.1016/j.immuni.2008.05.012
- Chiche L, Jourde-Chiche N, Whalen E, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol 2014;66:1583-1595. https://doi.org/10.1002/art.38628
- Siddani BR, Pochineni LP, Palanisamy M. Candidate gene identification for systemic lupus erythematosus using network centrality measures and gene ontology. PLoS One 2013;8:e81766. https://doi.org/10.1371/journal.pone.0081766
- Pflegerl P, Vesely P, Hantusch B, et al. Epidermal loss of JunB leads to a SLE phenotype due to hyper IL-6 signaling. Proc Natl Acad Sci U S A 2009;106:20423-20428. https://doi.org/10.1073/pnas.0910371106
- Jeffries MA, Dozmorov M, Tang Y, Merrill JT, Wren JD, Sawalha AH. Genome-wide DNA methylation patterns in CD4+ T cells from patients with systemic lupus erythematosus. Epigenetics 2011;6:593-601. https://doi.org/10.4161/epi.6.5.15374
- Romzova M, Hohenadel D, Kolostova K, et al. NFkappaB and its inhibitor IkappaB in relation to type 2 diabetes and its microvascular and atherosclerotic complications. Hum Immunol 2006;67:706-713. https://doi.org/10.1016/j.humimm.2006.05.006
- Jacob CO, Eisenstein M, Dinauer MC, et al. Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proc Natl Acad Sci U S A 2012;109:E59-E67. https://doi.org/10.1073/pnas.1118675109
- Ding Y, Chen M, Liu Z, et al. atBioNet: an integrated network analysis tool for genomics and biomarker discovery. BMC Genomics 2012;13:325. https://doi.org/10.1186/1471-2164-13-325
- Salvador JM, Hollander MC, Nguyen AT, et al. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 2002;16:499-508. https://doi.org/10.1016/S1074-7613(02)00302-3
- Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 2013;110:3507-3512. https://doi.org/10.1073/pnas.1222878110
- Borchers AT, Leibushor N, Naguwa SM, Cheema GS, Shoenfeld Y, Gershwin ME. Lupus nephritis: a critical review. Autoimmun Rev 2012;12:174-194. https://doi.org/10.1016/j.autrev.2012.08.018
- Berthier CC, Bethunaickan R, Gonzalez-Rivera T, et al. Cross-species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis. J Immunol 2012;189:988-1001. https://doi.org/10.4049/jimmunol.1103031
- Braun J, Sieper J. Ankylosing spondylitis. Lancet 2007;369:1379-1390. https://doi.org/10.1016/S0140-6736(07)60635-7
- Zhao J, Chen J, Yang TH, Holme P. Insights into the pathogenesis of axial spondyloarthropathy from network and pathway analysis. BMC Syst Biol 2012;6 Suppl 1:S4.
- Tam LS, Gu J, Yu D. Pathogenesis of ankylosing spondylitis. Nat Rev Rheumatol 2010;6:399-405. https://doi.org/10.1038/nrrheum.2010.79
- Pimentel-Santos FM, Ligeiro D, Matos M, et al. Whole blood transcriptional profiling in ankylosing spondylitis identifies novel candidate genes that might contribute to the inflammatory and tissue-destructive disease aspects. Arthritis Res Ther 2011;13:R57. https://doi.org/10.1186/ar3309
- Delany AM, Hankenson KD. Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. J Cell Commun Signal 2009;3:227-238. https://doi.org/10.1007/s12079-009-0076-0
- Machado do Reis L, Kessler CB, Adams DJ, Lorenzo J, Jorgetti V, Delany AM. Accentuated osteoclastic response to parathyroid hormone undermines bone mass acquisition in osteonectin-null mice. Bone 2008;43:264-273. https://doi.org/10.1016/j.bone.2008.03.024
- Sharma SM, Choi D, Planck SR, et al. Insights in to the pathogenesis of axial spondyloarthropathy based on gene expression profiles. Arthritis Res Ther 2009;11:R168. https://doi.org/10.1186/ar2855
- Gu J, Marker-Hermann E, Baeten D, et al. A 588-gene microarray analysis of the peripheral blood mononuclear cells of spondyloarthropathy patients. Rheumatology (Oxford) 2002;41:759-766. https://doi.org/10.1093/rheumatology/41.7.759
- Smith JA, Barnes MD, Hong D, DeLay ML, Inman RD, Colbert RA. Gene expression analysis of macrophages derived from ankylosing spondylitis patients reveals interferon-gamma dysregulation. Arthritis Rheum 2008;58:1640-1649. https://doi.org/10.1002/art.23512
- Duan R, Leo P, Bradbury L, Brown MA, Thomas G. Gene expression prof iling reveals a downregulation in immune-associated genes in patients with AS. Ann Rheum Dis 2010;69:1724-1729. https://doi.org/10.1136/ard.2009.111690
- Gu J, Wei YL, Wei JC, et al. Identification of RGS1 as a candidate biomarker for undifferentiated spondylarthritis by genome-wide expression prof iling and real-time polymerase chain reaction. Arthritis Rheum 2009;60:3269-3279. https://doi.org/10.1002/art.24968
- Assassi S, Reveille JD, Arnett FC, et al. Whole-blood gene expression prof iling in ankylosing spondylitis shows upregulation of toll-like receptor 4 and 5. J Rheumatol 2011;38:87-98. https://doi.org/10.3899/jrheum.100469
- Haroon N, Tsui FW, O'Shea FD, et al. From gene expression to serum proteins: biomarker discovery in ankylosing spondylitis. Ann Rheum Dis 2010;69:297-300. https://doi.org/10.1136/ard.2008.102277
- Laukens D, Peeters H, Cruyssen BV, et al. Altered gut transcriptome in spondyloarthropathy. Ann Rheum Dis 2006;65:1293-1300. https://doi.org/10.1136/ard.2005.047738
- Gu J, Rihl M, Marker-Hermann E, et al. Clues to pathogenesis of spondyloarthropathy derived from synovial fluid mononuclear cell gene expression profiles. J Rheumatol 2002;29:2159-2164.
- Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P. Drug target identification using side-effect similarity. Science 2008;321:263-266. https://doi.org/10.1126/science.1158140
- Chen R, Mias GI, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012;148:1293-1307. https://doi.org/10.1016/j.cell.2012.02.009
Cited by
- Treatment of connective tissue disease-associated interstitial lung disease: the pulmonologist’s point of view vol.32, pp.4, 2017, https://doi.org/10.3904/kjim.2016.212
- MicroRNA-143 and -145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritis vol.49, pp.8, 2015, https://doi.org/10.1038/emm.2017.108