DOI QR코드

DOI QR Code

Biaxial flexural strength of bilayered zirconia using various veneering ceramics

  • Chantranikul, Natravee (Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University) ;
  • Salimee, Prarom (Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University)
  • Received : 2015.03.27
  • Accepted : 2015.09.23
  • Published : 2015.10.30

Abstract

PURPOSE. The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. MATERIALS AND METHODS. Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:2008 into five groups according to veneering ceramics as follows; Katana zirconia veneering with CZR (K/CZR), Katana zirconia veneering with LV (K/LV), Katana zirconia veneering with CC (K/CC), Katana zirconia veneering with EM (K/EM) and Katana zirconia veneering with VT (K/VT). After 20,000 thermocycling, load tests were conducted using a universal testing machine (Instron). The BFS were calculated and analyzed with one-way ANOVA and Tukey HSD (${\alpha}$=0.05). The Weibull analysis was performed for reliability of strength. The mode of fracture and fractured surface were observed by SEM. RESULTS. It showed that K/CC had significantly the highest BFS, followed by K/LV. BFS of K/CZR, K/EM and K/VT were not significantly different from each other, but were significantly lower than the other two groups. Weibull distribution reported the same trend of reliability as the BFS results. CONCLUSION. From the result of this study, the BFS of the bilayered zirconia/veneer composite did not only depend on the Young's modulus value of the materials. Further studies regarding interfacial strength and sintering factors are necessary to achieve the optimal strength.

Keywords

References

  1. Kelly JR. Dental ceramics: what is this stuff anyway? J Am Dent Assoc 2008;139:4S-7S.
  2. Baldassarri M, Stappert CF, Wolff MS, Thompson VP, Zhang Y. Residual stresses in porcelain-veneered zirconia prostheses. Dent Mater 2012;28:873-9. https://doi.org/10.1016/j.dental.2012.04.019
  3. Salimee P, Thummawasi T. Biaxial flexural strength of zirconia-based ceramic with different core: veneer ratio. CU Dent J 2011;34:75-86.
  4. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  5. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307. https://doi.org/10.1016/j.dental.2007.05.007
  6. Larsson C, Wennerberg A. The clinical success of zirconiabased crowns: a systematic review. Int J Prosthodont 2014;27:33-43. https://doi.org/10.11607/ijp.3647
  7. Haff A, Lof H, Gunne J, Sjogren G. A retrospective evaluation of zirconia-fixed partial dentures in general practices: an up to 13-year study. Dent Mater 2015;31:162-70. https://doi.org/10.1016/j.dental.2014.11.009
  8. Schmitter M, Mussotter K, Rammelsberg P, Gabbert O, Ohlmann B. Clinical performance of long-span zirconia frameworks for fixed dental prostheses: 5-year results. J Oral Rehabil 2012;39:552-7. https://doi.org/10.1111/j.1365-2842.2012.02311.x
  9. Raigrodski AJ, Hillstead MB, Meng GK, Chung KH. Survival and complications of zirconia-based fixed dental prostheses: a systematic review. J Prosthet Dent 2012;107:170-7. https://doi.org/10.1016/S0022-3913(12)60051-1
  10. Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res 1995;74:1253-8. https://doi.org/10.1177/00220345950740060301
  11. Beuer F, Schweiger J, Eichberger M, Kappert HF, Gernet W, Edelhoff D. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings-a new fabrication mode for all-ceramic restorations. Dent Mater 2009;25:121-8. https://doi.org/10.1016/j.dental.2008.04.019
  12. Fischer J, Stawarczyk B, Hammerle CH. Flexural strength of veneering ceramics for zirconia. J Dent 2008;36:316-21. https://doi.org/10.1016/j.jdent.2008.01.017
  13. Fazi G, Vichi A, Ferrari M. Microtensile bond strength of three different veneering porcelain systems to a zirconia core for all ceramic restorations. Am J Dent 2010;23:347-50.
  14. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: Zirconia veneering ceramics. Dent Mater 2006;22:857-63. https://doi.org/10.1016/j.dental.2005.11.014
  15. Blatz MB, Bergler M, Ozer F, Holst S, Phark JH, Chiche GJ. Bond strength of different veneering ceramics to zirconia and their susceptibility to thermocycling. Am J Dent 2010;23:213-6.
  16. Ozkurt Z, Kazazoglu E, Unal A. In vitro evaluation of shear bond strength of veneering ceramics to zirconia. Dent Mater J 2010;29:138-46. https://doi.org/10.4012/dmj.2009-065
  17. Fischer J, Zbaren C, Stawarczyk B, Hammerle CH. The effect of thermal cycling on metal-ceramic bond strength. J Dent 2009;37:549-53. https://doi.org/10.1016/j.jdent.2009.03.014
  18. ISO 6872:2008. Dentistry-ceramic materials. ISO; Geneva; Switzerland, 2008.
  19. Lin WS, Ercoli C, Feng C, Morton D. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics. J Prosthodont 2012;21:353-62. https://doi.org/10.1111/j.1532-849X.2012.00845.x
  20. Fleming GJ, El-Lakwah SF, Harris JJ, Marquis PM. The effect of core:dentin thickness ratio on the bi-axial flexure strength and fracture mode and origin of bilayered dental ceramic composites. Dent Mater 2005;21:164-71. https://doi.org/10.1016/j.dental.2004.01.005
  21. Quinn JB, Quinn GD. A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent Mater 2010;26:135-47. https://doi.org/10.1016/j.dental.2009.09.006
  22. Guazzato M, Proos K, Quach L, Swain MV. Strength, reliability and mode of fracture of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Biomaterials 2004;25:5045-52. https://doi.org/10.1016/j.biomaterials.2004.02.036
  23. Fischer J, Stawarzcyk B, Trottmann A, Hammerle CH. Impact of thermal misfit on shear strength of veneering ceramic/zirconia composites. Dent Mater 2009;25:419-23. https://doi.org/10.1016/j.dental.2008.09.003
  24. Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater 2009;5:1668-77. https://doi.org/10.1016/j.actbio.2008.12.016
  25. Komine F, Saito A, Kobayashi K, Koizuka M, Koizumi H, Matsumura H. Effect of cooling rate on shear bond strength of veneering porcelain to a zirconia ceramic material. J Oral Sci 2010;52:647-52. https://doi.org/10.2334/josnusd.52.647
  26. Tuccillo JJ, Nielsen JP. Shear stress measurements at a dental porcelain-gold bond interface. J Dent Res 1972;51:626-33. https://doi.org/10.1177/00220345720510026301
  27. Saito A, Komine F, Blatz MB, Matsumura H. A comparison of bond strength of layered veneering porcelains to zirconia and metal. J Prosthet Dent 2010;104:247-57. https://doi.org/10.1016/S0022-3913(10)60133-3
  28. De Jager N, Pallav P, Feilzer AJ. The influence of design parameters on the FEA-determined stress distribution in CADCAM produced all-ceramic dental crowns. Dent Mater 2005;21:242-51. https://doi.org/10.1016/j.dental.2004.03.013
  29. Papanagiotou HP, Morgano SM, Giordano RA, Pober R. In vitro evaluation of low-temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP dental ceramics. J Prosthet Dent 2006;96:154-64. https://doi.org/10.1016/j.prosdent.2006.08.004
  30. White SN, Miklus VG, McLaren EA, Lang LA, Caputo AA. Flexural strength of a layered zirconia and porcelain dental all-ceramic system. J Prosthet Dent 2005;94:125-31. https://doi.org/10.1016/j.prosdent.2005.05.007
  31. Zeng K, Oden A, Rowcliffe D. Evaluation of mechanical properties of dental ceramic core materials in combination with porcelains. Int J Prosthodont 1998;11:183-9.
  32. Thompson GA. Influence of relative layer height and testing method on the failure mode and origin in a bilayered dental ceramic composite. Dent Mater 2000;16:235-43. https://doi.org/10.1016/S0109-5641(00)00005-1
  33. Taskonak B, Mecholsky JJ Jr, Anusavice KJ. Residual stresses in bilayer dental ceramics. Biomaterials 2005;26:3235-41. https://doi.org/10.1016/j.biomaterials.2004.08.025
  34. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005;21:984-91. https://doi.org/10.1016/j.dental.2005.03.013
  35. Isgro G, Wang H, Kleverlaan CJ, Feilzer AJ. The effects of thermal mismatch and fabrication procedures on the deflection of layered all-ceramic discs. Dent Mater 2005;21:649-55. https://doi.org/10.1016/j.dental.2004.09.001
  36. Yoshinari M, Derand T. Fracture strength of all-ceramic crowns. Int J Prosthodont 1994;7:329-38.
  37. Studart AR, Filser F, Kocher P, Gauckler LJ. In vitro lifetime of dental ceramics under cyclic loading in water. Biomaterials 2007;28:2695-705. https://doi.org/10.1016/j.biomaterials.2006.12.033
  38. Ohlmann B, Rammelsberg P, Schmitter M, Schwarz S, Gabbert O. All-ceramic inlay-retained fixed partial dentures: preliminary results from a clinical study. J Dent 2008;36:692-6. https://doi.org/10.1016/j.jdent.2008.04.017
  39. Anusavice KJ, Kakar K, Ferree N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin Oral Implants Res 2007;18:218-31. https://doi.org/10.1111/j.1600-0501.2007.01460.x
  40. Ban S, Anusavice KJ. Influence of test method on failure stress of brittle dental materials. J Dent Res 1990;69:1791-9. https://doi.org/10.1177/00220345900690120201
  41. Lawn BR, Deng Y, Thompson VP. Use of contact testing in the characterization and design of all-ceramic crownlike layer structures: a review. J Prosthet Dent 2001;86:495-510. https://doi.org/10.1067/mpr.2001.119581
  42. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Effect of zirconia type on its bond strength with different veneer ceramics. J Prosthodont 2008;17:401-8. https://doi.org/10.1111/j.1532-849X.2008.00306.x
  43. Kim HJ, Lim HP, Park YJ, Vang MS. Effect of zirconia surface treatments on the shear bond strength of veneering ceramic. J Prosthet Dent 2011;105:315-22. https://doi.org/10.1016/S0022-3913(11)60060-7
  44. Wiskott HW, Nicholls JI, Belser UC. Stress fatigue: basic principles and prosthodontic implications. Int J Prosthodont 1995;8:105-16.
  45. Zhang Y, Lawn B. Long-term strength of ceramics for biomedical applications. J Biomed Mater Res B Appl Biomater 2004;69:166-72.
  46. Wakabayashi N, Anusavice KJ. Crack initiation modes in bilayered alumina/porcelain disks as a function of core/veneer thickness ratio and supporting substrate stiffness. J Dent Res 2000;79:1398-404. https://doi.org/10.1177/00220345000790060801
  47. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res 2013;57:236-61. https://doi.org/10.1016/j.jpor.2013.09.001
  48. Al-Amleh B, Neil Waddell J, Lyons K, Swain MV. Influence of veneering porcelain thickness and cooling rate on residual stresses in zirconia molar crowns. Dent Mater 2014;30:271-80. https://doi.org/10.1016/j.dental.2013.11.011
  49. Paula VG, Lorenzoni FC, Bonfante EA, Silva NR, Thompson VP, Bonfante G. Slow cooling protocol improves fatigue life of zirconia crowns. Dent Mater 2015;31:77-87. https://doi.org/10.1016/j.dental.2014.10.005
  50. Belli R, Frankenberger R, Appelt A, Schmitt J, Baratieri LN, Greil P, Lohbauer U. Thermal-induced residual stresses affect the lifetime of zirconia-veneer crowns. Dent Mater 2013;29: 181-90. https://doi.org/10.1016/j.dental.2012.11.015