DOI QR코드

DOI QR Code

간단한 화학적 합성을 통한 고성능 슈퍼캐패시터용 수산화 구리 전극

Facile Chemical Growth of Cu(OH)2 Thin Film Electrodes for High Performance Supercapacitors

  • Patil, U.M. (Nano ElectroMechanical Device Laboratory, School of Mechanical Engineering, Yonsei University) ;
  • Nam, Min Sik (Nano ElectroMechanical Device Laboratory, School of Mechanical Engineering, Yonsei University) ;
  • Shinde, N.M. (Nano ElectroMechanical Device Laboratory, School of Mechanical Engineering, Yonsei University) ;
  • Jun, Seong Chan (Nano ElectroMechanical Device Laboratory, School of Mechanical Engineering, Yonsei University)
  • 발행 : 2015.09.30

초록

본 연구에서는 간단한 화학적 합성 방법을 통하여 스테인레스 기판 위에 nano-bud 형태의 수산화 구리 박막을 형성하였다. 그리고 또 다른 합성 방법인 chemical bath deposition을 이용하여 수산화 구리 나노 구조를 간단하고 친환경적으로 형성하였다. 수산화 구리 박막의 구조적 연구는 X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) 방법을 통하여 이루어졌으며 다결정의 nano-bud 형상을 확인할 수 있었다. 또한 나노 구조로 합성된 수산화구리 전극의 전기화학적 측정은 1M KOH의 전해질 조건에서 cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD)에서 측정되었으며 $340Fg^{-1}$의 높은 비 용량을 보였다. 또한 $1mA\;cm^{-2}$ 의 전력 밀도에서 ${\sim}83Wh\;kg^{-1}$의 높은 에너지 밀도와 ${\sim}3.1kW\;kg^{-1}$의 높은 출력 밀도를 가지며 향상된 전극의 성능을 보였다. 이러한 뛰어난 의사 캐패시터의 성능은 수산화 구리의 nano-bud 형상에 의한 효과로 확인할 수 있었다. 본 연구를 통하여 화학적 합성 방법의 확장을 통하여 수산화 구리 전극의 에너지 저장 장치로써의 성능을 확인할 수 있었다.

A facile soft chemical synthesis route is used to grow nano-buds of copper hydroxide [$Cu(OH)_2$] thin films on stainless steel substrate[SS]. Besides different chemical methods for synthesis of $Cu(OH)_2$ nanostructure, the chemical bath deposition (CBD) is attractive for its simplicity and environment friendly condition. The structural, morphological, and electro-chemical properties of $Cu(OH)_2$ thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurement techniques. The results showed that, facile chemical synthesis route allows to form the polycrystalline, granular nano-buds of $Cu(OH)_2$ thin films. The electrochemical properties of $Cu(OH)_2$ thin films are studied in an aqueous 1 M KOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with $340Fg^{-1}$ specific capacitance. Moreover, electrochemical capacitive measurements of $Cu(OH)_2/SS$ electrode exhibit a high specific energy and power density about ${\sim}83Wh\;kg^{-1}$ and ${\sim}3.1kW\;kg^{-1}$, respectively, at $1mA\;cm^{-2}$ current density. The superior electrochemical properties of copper hydroxide ($Cu(OH)_2/SS$) electrode with nano-buds like structure mutually improves pseudocapacitive performance. This work evokes scalable chemical synthesis with the enhanced supercapacitive performance of $Cu(OH)_2/SS$ electrode in energy storage devices.

키워드

참고문헌

  1. C.C. Hu, J.C. Chen, K.H. Chang, J. Power Sources, 221, (2013), 128-133. https://doi.org/10.1016/j.jpowsour.2012.07.111
  2. H. Zhang, Y. Wang, C. Liu, H. Jiang, J. Alloys Comp., 517, (2012), 1-8. https://doi.org/10.1016/j.jallcom.2011.11.042
  3. C.D. Lokhande, A.M. More, J.L. Gunjakar, J. Alloys Comp., 486, (2009), 570-580. https://doi.org/10.1016/j.jallcom.2009.07.009
  4. N. Li, M. Cao and C. Hu, Nanoscale, 4, (2012), 6205-6218. https://doi.org/10.1039/c2nr31750h
  5. V.D. Patake, S.S. Joshi, C.D. Lokhande, O.S. Joo, Mater. Chem. Phys., 114, (2009), 6-9. https://doi.org/10.1016/j.matchemphys.2008.09.031
  6. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamadade, C.D. Lokhande, J. Alloys Comp., 492, (2010), 26-30. https://doi.org/10.1016/j.jallcom.2009.11.149
  7. J.S. Shaikh, R.C. Pawar, N.L. Tarwal, D.S. Patil, P.S. Patil, J. Alloys Comp., 509, (2011), 7168-7174. https://doi.org/10.1016/j.jallcom.2011.04.040
  8. D. Kim, K.Y. Rhee, S.J. Park, J. Alloys Comp., 530, (2012), 6-10. https://doi.org/10.1016/j.jallcom.2012.02.157
  9. S. Kandalkar, J. Gunjakar and C. Lokhande, Appl. Surf. Sci., 254, (2008), 5540-5544. https://doi.org/10.1016/j.apsusc.2008.02.163
  10. I.L. Zhang, Z. Xiong, X.S. Zhao, J. Power Sources, 222, (2013), 326-332. https://doi.org/10.1016/j.jpowsour.2012.09.016
  11. P. Gao, M. Zhang, Z. Niu, Q. Xiao, Chem. Commun., 48, (2007), 5197-5199.
  12. L. Zhu, Y. Chen, Y. Zheng, N. Li, J. Zhao, Y. Sun, Mater. Lett., 64, (2010), 976-979. https://doi.org/10.1016/j.matlet.2010.01.078
  13. K.V. Gurav, U.M. Patil, S.W. Shin, G.L. Agawane, M.P. Suryawanshi, S.M. Pawar, P.S. Patil, C.D. Lokhande, J.H. Kim, J. Alloys Comp., 509, (2011), 27-31. https://doi.org/10.1016/j.jallcom.2010.08.071
  14. X. Liu, Z. Li, Q. Zhang, F. Li, T. Kong, Mater. Lett., 72, (2012), 49-52. https://doi.org/10.1016/j.matlet.2011.12.077
  15. X. Guan, L. Li, G. Li, Z. Fu, J. Zheng, T. Yan, J. Alloys Comp., 509, (2011), 3367-3374. https://doi.org/10.1016/j.jallcom.2010.12.067
  16. G. Hodes, Phys. Chem. Chem. Phys., 9, (2007), 2181-2196. https://doi.org/10.1039/b616684a
  17. C. Zhu, A. Oshero and Matthew J. Panzer, Electrochimica Acta, 111, (2013), 771-778. https://doi.org/10.1016/j.electacta.2013.08.038
  18. F. Wang, W. Tao, M. Zhao, M. Xu, S. Yang, Z. Sun, L. Wang, J. Alloys Comp., 509, (2011), 9783-9803.
  19. S. B. Kulkarni, U. M. Patil, I. Shackery, J. S. Sohn, S. Lee, B. Park and S. Jun, J. Mater. Chem. A, 2, (2014), 4989-4998. https://doi.org/10.1039/c3ta14959e
  20. U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, J. Power Sources, 188, (2009), 338-342. https://doi.org/10.1016/j.jpowsour.2008.11.136
  21. U.M. Patil, S.B. Kulkarni, V.S. Jamadade, C.D. Lokhande, J. Alloys Comp., 509, (2011), 1677-1682. https://doi.org/10.1016/j.jallcom.2010.09.133
  22. A. Bruke, J. Power Sources, 91, (2000), 37-50. https://doi.org/10.1016/S0378-7753(00)00485-7
  23. U.M. Patil, Su Chan Lee, J.S. Sohn, S.B. Kulkarni, K.V. Gurav, J.H. Kim, Jae Hun Kim, Seok Lee, Seong Chan Jun, Electrochimica Acta, 129, (2014), 334-342. https://doi.org/10.1016/j.electacta.2014.02.063
  24. U. M. Patil, M. S. Nam, J. S. Sohn, S. B. Kulkarni, R. Shin, S. Kang, S. Lee, J. H. Kim and S. Chan Jun, J. Mater. Chem. A, 2, (2014), 19075-19083. https://doi.org/10.1039/C4TA03953J
  25. J. Chen, J. Xu, S. Zhou, N. Zhao and C.-P. Wong, J. Mater. Chem. A, 3, (2015), 17385-17391. https://doi.org/10.1039/C5TA04164C
  26. A. Pramanik, S. Maiti and S. Mahanty, Dalton Trans., 44, (2015), 14604-14612. https://doi.org/10.1039/C5DT01643F
  27. S.K. Shinde, D.P. Dubal, G.S. Ghodake, D.Y. Kim, V.J. Fulari, Journal of Electroanalytical Chemistry, 732, (2014), 80-85. https://doi.org/10.1016/j.jelechem.2014.09.004
  28. C.-C. Hu, W.-C. Chen, Electrochimica Acta, 49, (2004), 3469-3477. https://doi.org/10.1016/j.electacta.2004.03.017
  29. V. Ganesh, S. Pitchumani, V. Lakshminarayanan, Journal of Power Sources, 158, (2006), 1523-1532. https://doi.org/10.1016/j.jpowsour.2005.10.090