DOI QR코드

DOI QR Code

Photoelectron Spectroscopy Study of the Semiconductor Electrode Nanomaterials for the Dye Synthesized Solar Cell

염료감응 태양전지 전극용 반도체 나노 물질의 광전자분광 연구

  • Kim, Hyun Woo (Department of Physics, The Catholic University of Korea) ;
  • Lee, Eunsook (Department of Physics, The Catholic University of Korea) ;
  • Kim, D.H. (Department of Physics, The Catholic University of Korea) ;
  • Seong, Seungho (Department of Physics, The Catholic University of Korea) ;
  • Kang, J.-S. (Department of Physics, The Catholic University of Korea) ;
  • Moon, S.Y. (Department of Chemistry, The Catholic University of Korea) ;
  • Shin, Yuju (Department of Chemistry, The Catholic University of Korea)
  • Received : 2015.09.08
  • Accepted : 2015.10.19
  • Published : 2015.10.31

Abstract

The electronic structures of the potential candidate semiconductor nanoparticles for dye-sensitized solar cell (DSSC), such as $ZnSnO_3$ and $Zn_2SnO_4$, have been investigated by employing X-ray photoemission spectroscopy (XPS). The measured X-ray diffraction patterns show that $ZnSnO_3$ and $Zn_2SnO_4$ samples have the single-phase ilmenite-type structure and the inverse spinel structure, respectively. The measured Zn 2p and Sn 3d core-level XPS spectra reveal that the valence states of Zn and Sn ions are divalent (Zn 2+) and tetravalent (Sn 4+), respectively, in both $ZnSnO_3$ and $Zn_2SnO_4$. On the other hand, the shallow core-level measurements show that the binding energies of Sn 4d and Zn 3d core levels in $ZnSnO_3$ are lower than those in $Zn_2SnO_4$. This work provides the information on the valence states of Zn and Sn ions and their chemical bonding in $ZnSnO_3$ and $Zn_2SnO_4$.

이 연구에서는 X-선 광전자분광법(X-ray photoemission spectroscopy: XPS)을 이용하여 염료감응 태양전지의 전극용 후보 물질에 속하는 $ZnSnO_3$$Zn_2SnO_4$의 전자 구조를 연구하였다. 제조된 시료들에 대한 X-선 회절 측정에 의하면 $ZnSnO_3$$Zn_2SnO_4$ 시료는 각각 단일상의 ilmenite(IL) 구조와 역스피넬(inverse spinel) 구조를 가지고 있음을 알 수 있었다. Zn 2p와 Sn 3d 내각준위 XPS 측정으로부터 $ZnSnO_3$$Zn_2SnO_4$ 두 시료 모두에서 Zn 이온은 2가 (Zn 2+) 상태이며, Sn 이온은 4가 (Sn 4+) 상태임을 알 수 있었다. 한편 얕은 내각준위 XPS 스펙트럼의 측정에서는 $ZnSnO_3$의 Sn 4d와 Zn 3d 내각 준위들의 결합에너지가 $Zn_2SnO_4$에서 보다 다소 작게 관찰되었다. 이 연구로부터 $ZnSnO_3$$Zn_2SnO_4$에서의 각 이온의 원자가 상태와 화학적 결합 상태에 대한 정보를 얻을 수 있었다.

Keywords

References

  1. B. O'Regan and M. Gratzel, Nature 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  3. M. Gratzel, Nature 414, 338 (2001). https://doi.org/10.1038/35104607
  4. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, Appl. Phys. Lett. 68, 3120 ( 1996). https://doi.org/10.1063/1.115797
  5. S. E. Shaheen, C. J. Brabec, N. Serdar Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001). https://doi.org/10.1063/1.1345834
  6. M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend, Nature 395, 257 (1998). https://doi.org/10.1038/26183
  7. M. Gratzel and A. J. Frank, J. Phys. Chem. 86, 2964 (1982). https://doi.org/10.1021/j100212a031
  8. A. Hagfeldt and M. Gratzel, Chem. Rev. 95, 49 (1995). https://doi.org/10.1021/cr00033a003
  9. Y. Tachibana, J. E. Moser, M. Gratzel, D. R. Klug, and J. R. Durrant, J. Phys. Chem. 100, 20056 (1996). https://doi.org/10.1021/jp962227f
  10. A. Hinsch, J. M. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer, and J. Ferber, Prog. Photovolt.: Res. Appl. 9, 425 (2001). https://doi.org/10.1002/pip.397
  11. J. H. Lee, D. G. Lim, and J. S. Lee, "Principle of solar cell" (HongRung Publishing Company, 2005), pp. 99-124.
  12. http://www.eren.doe.gov/pv/history.html.
  13. N. G. Park, J. Korean Ind. Eng. Chem. 15, 265 (2004).
  14. L. Lawrece, Kazmerski, Renewab. Sustain. Energy Rev. 1, 71 (1997). https://doi.org/10.1016/S1364-0321(97)00002-6
  15. Z. G. Sheng, M. Nakamura, W. Koshibae, T. Makino, Y. Tokura, and M. Kawasaki, Nature Commun. 5, 4584 (2014).
  16. R. Nechache, C. Harnagea, S. Li, L. Cardnenas, W. Huang, and F. Rosei, Nature Photonics 9, 61 (2015). https://doi.org/10.1038/nphoton.2014.255
  17. S. Hufner, Photoelectron spectroscopy, in Solid-State Sciences, Springer-Verlag, Berlin, 82 (1995).
  18. Y. L. Qin, F. F. Zhang, Z. C. Du, G. Huang, Y. C. Liu, and L. M. Wang, J. Mater. Chem. A 3, 2985 (2015). https://doi.org/10.1039/C4TA06055E
  19. Z. Tian, C. Liang, J. Liu, H. Zhang, and L. Zhang, J. Mater. Chem. 22, 17210 (2012). https://doi.org/10.1039/c2jm32406g
  20. J. H. Lee, S. Y. Moon, and Y. J. Shin, J. Kor. Chem. Soc. 56, 159 (2012). https://doi.org/10.5012/jkcs.2012.56.1.159
  21. R. A. P. Ribeiro and R. de Lazaro, Royal Soc. Chem. Adv. (RSC Advances) 4, 59839 (2014).
  22. L. Gracia, A. Beltran and J. Andres, J. Phys. Chem. C 115, 7740 (2011). https://doi.org/10.1021/jp2006606
  23. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain, Perkin-Elmer Corporation, Minnesota (1992).
  24. K. D. Childs, B. A. Carlson, L. A. LaVanier, J. F. Moulder, D. F. Paul, W. F. Stickle, D. G. Watson, edited by C. L. Helberg, Handbook of Auger Electron Spectroscopy, edited by C. L. Helberg, Physical Electronics, Inc., Minnesota (1995).
  25. L. Hedin, J. Michiels, and J. Inglesfield, Phys. Rev. 58, 15565 (1998). https://doi.org/10.1103/PhysRevB.58.15565