DOI QR코드

DOI QR Code

THE ADAPTATION METHOD IN THE MONTE CARLO SIMULATION FOR COMPUTED TOMOGRAPHY

  • LEE, HYOUNGGUN (Department of Bio-convergence Engineering, Korea University) ;
  • YOON, CHANGYEON (Department of Bio-convergence Engineering, Korea University) ;
  • CHO, SEUNGRYONG (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • PARK, SUNG HO (Department of Neurosurgery, Ulsan University Hospital) ;
  • LEE, WONHO (Department of Bio-convergence Engineering, Korea University)
  • 투고 : 2014.05.07
  • 심사 : 2015.01.09
  • 발행 : 2015.06.25

초록

The patient dose incurred from diagnostic procedures during advanced radiotherapy has become an important issue. Many researchers in medical physics are using computational simulations to calculate complex parameters in experiments. However, extended computation times make it difficult for personal computers to run the conventional Monte Carlo method to simulate radiological images with high-flux photons such as images produced by computed tomography (CT). To minimize the computation time without degrading imaging quality, we applied a deterministic adaptation to the Monte Carlo calculation and verified its effectiveness by simulating CT image reconstruction for an image evaluation phantom (Catphan; Phantom Laboratory, New York NY, USA) and a human-like voxel phantom (KTMAN-2) (Los Alamos National Laboratory, Los Alamos, NM, USA). For the deterministic adaptation, the relationship between iteration numbers and the simulations was estimated and the option to simulate scattered radiation was evaluated. The processing times of simulations using the adaptive method were at least 500 times faster than those using a conventional statistical process. In addition, compared with the conventional statistical method, the adaptive method provided images that were more similar to the experimental images, which proved that the adaptive method was highly effective for a simulation that requires a large number of iterations-assuming no radiation scattering in the vicinity of detectors minimized artifacts in the reconstructed image.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. American Association of Physicists in Medicine (AAPM), Medical physics: the management of imaging dose during image-guided radiotherapy: report Task Group 75, AAPM Task Group 75, Med. Phys. 34 (2007) 4041. https://doi.org/10.1118/1.2775667
  2. L.K. Wagner, P.J. Eifel, R.A. Geise, Potential biological effects following high X-ray dose interventional procedures, J. Vasc. Interv. Radiol. 5 (1994) 71-81. https://doi.org/10.1016/S1051-0443(94)71456-1
  3. E.J. Hall, C.S. Wuu, Radiation-induced second cancers: the impact of 3D-CRT and IMRT, Int. J. Radiat. Oncol. Biol. Phys. 56 (2003) 83-88. https://doi.org/10.1016/S0360-3016(03)00073-7
  4. A.D. Lazarine, Medical Physics Calculations with MCNP:$^{TM}$ a Primer, Master of Science Thesis, Texas A&M University, College Station, TX, 2006.
  5. C.R. Harrell, I.G. Zubal, Effect of Variance Reduction Techniques on Monte Carlo Simulated Energy Spectra. Bioengineering Conference, Proceedings of the 1991 IEEE Seventeenth Annual Northeast (Hartford, Connecticut), IEEE, New York, NY, 1991, pp. 97-98.
  6. D. Sarrut, L.L. Gulgues, Region-oriented CT image representation for reducing computing time of Monte Carlo simulations, Med. Phys. 35 (2008) 1452-1463. https://doi.org/10.1118/1.2884854
  7. D.E. Peplow, K. Verghese, Digital mammography image simulation using Monte Carlo, Med. Phys. 27 (2000) 568-579. https://doi.org/10.1118/1.598896
  8. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G.A.P. Cirrone, G.D. Cooperman, G. Cosmo, G. Cuttone, G.G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano, J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivnacova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kokoulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo, M. Maire, A. Mantero, B. Mascialino, I. McLaren, P. Mendez Lorenzo, K. Minamimoto, K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeiffer, M.G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki, D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tome, A. Trindade, P. Truscott, L. Urban, M. Verderi, A. Walkden, J.P. Wellisch, D.C. Williams, D. Wright, H. Yoshida, Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270-278. https://doi.org/10.1109/TNS.2006.869826
  9. A.M. Wysocka-Rabin, S. Qamhiyeh, O. Jakel, Simulation of computed tomography (CT) images using a Monte Carlo approach, Nukleonika 56 (2011) 299-304.
  10. J.K. Shultis, R.E. Faw, Radiation Shielding, Chapter 11, American Nuclear Society, Inc., La Grange Park, IL, 2000, pp. 415-420.
  11. J.K. Shultis, R.E. Faw, Radiation Shielding, Chapter 11, American Nuclear Society, Inc., La Grange Park, IL, 2000, pp. 420-426.
  12. X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-particle Transport Code, Version 5, Los Alamos National Laboratory, Los Alamos, NM, 2003.
  13. K. Cranley, B.J. Gilmore, G.W.A. Fogarty, L. Deponds, Catalogue of Diagnostic X-ray Spectra and Other Data (IPEM Report 78), Institute of Physics and Engineering in Medicine, York, UK, 1997.
  14. N. Keat, D. Platten, M. Lewis, S. Edyvean, ImPACT Scan Report 05071: Siemens Somatom Sensation Open CT Scanner Technical Evaluation. Imaging Performance Assessment of CT Scanners, Center for Evidence-based Purchasing, London, England, 2005.
  15. Phantom Laboratory Inc, Catphan$^{(R)}$ 500 and 600 Manual, Phantom Laboratory, Inc., New York, NY, 2010.
  16. C. Lee, C. Lee, S.H. Park, J.K. Lee, Development of the two Korean adult tomographic computational phantoms for organ dosimetry, Med. Phys. 33 (2006) 380-390. https://doi.org/10.1118/1.2161405

피인용 문헌

  1. Monte Carlo-Based Finite Element Method for the Study of Randomly Distributed Vacancy Defects in Graphene Sheets vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/3037063
  2. Buckling Analysis of Vacancy-Defected Graphene Sheets by the Stochastic Finite Element Method vol.11, pp.9, 2015, https://doi.org/10.3390/ma11091545