DOI QR코드

DOI QR Code

Block-based Contrast Enhancement Algorithm for X-ray Images

X-ray 영상을 위한 블록 기반 대비 개선 기법

  • Received : 2015.06.17
  • Accepted : 2015.09.24
  • Published : 2015.10.25

Abstract

If typical contrast enhancement algorithms for natural images are applied to X-ray images, they may cause artifacts such as overshooting or produce unnatural visual quality because they do not consider inherent characteristics of X-ray images. In order to overcome such problems, we propose a locally adaptive block-based contrast enhancement algorithm for X-ray images. After we derive a weighted cumulative distribution function for each block, we apply it to each block for contrast enhancement. Then, we obtain images that are removed from block effect by adopting block-based overlapping. In post-processing, we obtain the final image by emphasizing high frequency components. Experimental results show that the proposed block-based contrast enhancement algorithm provides at maximum 5-times higher visual quality than the exiting algorithm in terms of quantitative contrast metric.

자연 영상들을 위한 전형적인 지역적 대비 개선 기법을 X-ray 영상에 적용할 경우, X-ray 고유의 특성을 고려하지 않기 때문에 과도한 개선이 이루어지거나 부자연스러운 화질을 생성하는 화상의 결함이 발생할 수 있다. 이러한 문제를 해결하기 위해 본 논문은 지역적으로 X-ray 영상을 위한 블록 기반 대비 개선 기법을 제안한다. 먼저 블록 단위로 가중치 누적 분포 변환 함수를 도출하고, 이를 이용한 블록 단위 대비 개선을 수행한다. 다음으로, 블록 기반 중첩을 적용하여 블록화 현상이 제거된 영상을 획득한다. 후처리로 고주파 성분을 강조하여 최종 영상을 획득한다. 모의실험을 통해 제안한 블록 기반 대비 개선 기법이 일반적인 대비 개선 기법보다 정량적인 대비 개선 척도에서 최대 5배 우수함을 확인하였다.

Keywords

References

  1. R. C. Gonzalez, R. E. Woods, Digital image processing. 2nd ed. Reading, MA. Addison-Wesley, pp. 85-103, 1992.
  2. M. Abdullah-Al-Wadud, M. Hasanul Kabir, M. Ali Akber Dewan, and Oksam Chae, "A dynamic histogram equalization for image contrast enhancement," IEEE Trans. Consumer Electron., vol. 53, no. 2, pp. 593-600, May 2007. https://doi.org/10.1109/TCE.2007.381734
  3. C. H. Lu, H. Y. Hsu, L. Wang, "A new contrast enhancement technique by adaptively increasing the value of histogram," in IEEE International Workshop on Imaging Systems and Techniques, China, pp. 407-411, 2009.
  4. S. D. Chen and A. Rahman Ramni, "Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation," IEEE Trans. Consumer Electron., vol. 49, no. 4, pp. 1301-1309, Nov. 2003. https://doi.org/10.1109/TCE.2003.1261233
  5. G. H. Park, H. H. Cho, M. R. Choi, "A contrast enhancement method using dynamic range separate histogram equalization," IEEE Trans. Consumer Electron., vol. 54, no. 4, pp. 1981-1987, Nov. 2008. https://doi.org/10.1109/TCE.2008.4711262
  6. S. C. Huang, F. C. Cheng, and Y, S. Chiu, "Efficient contrast enhancement using adaptive gamma correction with weighting distribution," IEEE Trans. Image Processing, vol. 22, no. 3, pp. 1032-1041, Mar. 2013. https://doi.org/10.1109/TIP.2012.2226047
  7. K. Kokufuta and T. Maruyama, "Real-time processing of local contrast enhancement on FPGA," in International Conference on Field Programmable Logic and Applications, Prague, pp. 288-293, 2009.
  8. J. A. Stark, "Adaptive image contrast enhancement using generalizations of histogram equalization," IEEE Trans. Image Processing, vol. 9, no. 5, pp. 889-896, May 2000. https://doi.org/10.1109/83.841534
  9. T. K. Kim, J. K. Paik and B. S. Kang, "Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering," IEEE Trans. Consumer Electron., vol. 44, no. 1, pp. 82-86, Feb. 1998. https://doi.org/10.1109/30.663733
  10. K. Zuiderveld, "Contrast limited adaptive histogram equalization," Graphics Gems IV, pp. 474-485. Academic Press Professional, Inc., 1994.
  11. B. Liu, W. Jin, Y. Chen, C. Liu, and L. Li, "Contrast enhancement using non-overlapped sub-blocks and local histogram projection," IEEE Trans. Consumer Electron., vol. 57, no. 2, pp. 583-588, May 2011. https://doi.org/10.1109/TCE.2011.5955195
  12. T. Qiu, A. Wang, N. Yu, and A. Song, "LLSURE: local linear SURE-based edge-preserving image filtering," IEEE Trans. Image Processing, vol. 22, no. 1, pp. 80-90, Jan. 2013. https://doi.org/10.1109/TIP.2012.2214052
  13. J. H. Jang, B. Choi, S. D. Kim, and J. B. Ra, "Sub-band decomposed multiscale retinex with space varying gain," in Proc. IEEE Int. Conf. Image Process.(ICIP), pp. 3168-3171, 2008.
  14. S. S. Agaian, K. Panetta, and A. Grigoryan, "Transform based image enhancement with performance measure," IEEE Trans. Image Processing, vol. 10, no. 3, pp. 367-382, Mar. 2001. https://doi.org/10.1109/83.908502
  15. S. S. Agaian, B. Silver, and K. A. Panetta, "Transform coefficient histogram-based image enhancement algorithms using contrast entropy," IEEE Trans. Image Processing, vol. 16, no. 3, pp. 471-758, Mar. 2007.
  16. A. Saleem, A. Beghdadi, and B. Boashash, "Image fusion-based contrast enhancement" EURASIP Journal on Image and Video Processing, 2012.