DOI QR코드

DOI QR Code

철도차량용 분산형 제어시스템을 위한 네트워크 토폴로지 분석

Analysis of Network Topology for Distributed Control System in Railroad Trains

  • 황환웅 (서울과학기술대학교 전기정보공학과) ;
  • 김정태 (한국철도기술연구원) ;
  • 이강원 (한국철도기술연구원) ;
  • 윤지훈 (서울과학기술대학교 전기정보공학과)
  • Hwang, Hwanwoong (Department of Electrical and Information Engineering, Seoul National University of Science and Technology) ;
  • Kim, Jungtai (Korea Railroad Research Institute) ;
  • Lee, Kang-Won (Korea Railroad Research Institute) ;
  • Yun, Ji-Hoon (Department of Electrical and Information Engineering, Seoul National University of Science and Technology)
  • 투고 : 2015.08.19
  • 심사 : 2015.09.24
  • 발행 : 2015.10.25

초록

철도 차량의 전자화 무인화 시, 보다 높은 안정성을 위해 차량의 각 제어장치를 개별 컴포넌트로 분리하고, 이를 네트워크에 연결하여 분산형 제어시스템을 구성할 필요성이 높아지고 있다. 본 논문은 철도차량의 분산형 제어 시스템 구성을 위해 이더넷 망 이용 시 가능한 네트워크 토폴로지를 제시하고, 대상 토폴로지를 (1) 장애복구, (2) 장치별 필요 포트 수, (3) 차량 간 접속 케이블 수, (4) 성능의 네 가지 관점에서 비교 분석한다. 특히, 철도차량의 고유한 특성인 연결 차량 수의 변화 시, 이에 따른 네트워크 성능 효과를 고려하여 분석을 수행하고, 이에 맞는 네트워크 토폴로지를 제시한다. 이를 위해, 먼저 철도차량의 네트워크 토폴로지 구성을 차량 내와 차량 간 연결로 분류하여 여러 대상 조합을 고려한다. 또, 철도 차량 간 연결 수 증가로 인한 접속 단절/불안정 문제를 완화하기 위해 차량 간 연결에서 스타와 데이지체인의 복합 구성인 하이브리드 토폴로지를 제시한다. 시뮬레이션을 통해 토폴로지 간 성능을 비교하고, 차량 간 연결 수 제한 하에서도 하이브리드 토폴로지가 충분한 성능 개선이 있음을 보인다.

For higher reliability against component failures in railroad trains with many electronic sensors and actuators, a distributed control system with which all electronic components are connected via a network is being considered. This paper compares and analyzes various topologies of Ethernet network for a railroad train in the aspects of (1) failure recovery, (2) the number of ports per device, (3) the number of cable connections between vehicles, and (4) performance. Especially, the unique characteristic of a train system that the number of vehicles changes is considered through analysis. Various combinations of in- and inter-vehicle topologies are considered. In addition, we introduce a hybrid of star and daisy-chain topology for inter-vehicle connection when the maximum number of inter-vehicle connections is limited to reduce possible failures of inter-vehicle connections. Simulation results show performance comparison between different topology combinations; the hybrid topology is shown to enhance delay performance even with a highly limited number of inter-vehicle connections.

키워드

참고문헌

  1. Electronic railway equipment - Train communication network (TCN), IEC 61375, 2012.
  2. Peter Hank, Steffen Muller, Ovidiu Vermesan, Jeroen Van Den Keybus, "Automotive ethernet: in-vehicle networking and smart mobility," in Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1735-1739, 2013.
  3. Ovidiu Vermesan et al., "Advanced Electronic Architecture Design for Next Electric Vehicle Generation," Springer Lecture Notes in Mobility, pp. 117-141, 2015.
  4. S. Tuohy et al., "Intra-Vehicle Networks: A Review," IEEE Trans. on Intelligent Transportation Systems, Vol. 16, no. 2, pp. 534-545, 2015. https://doi.org/10.1109/TITS.2014.2320605
  5. Hyung-Taek Lim, Lars Volker, and Daniel Herrscher, "Challenges in a future IP/Ethernet-based in-car network for real-time applications," in Proceedings of the 48th Design Automation Conference, pp. 7-12, 2011.
  6. M. Manderscheid and F. Langer, "Network Calculus for the Validation of Automotive Ethernet In-vehicle Network Configurations," in Proceedings of the International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 206-211, 2011.
  7. Mohammad Ashjaei et al., "Improved Message Forwarding for Multi-Hop HaRTES Real-Time Ethernet Networks," Journal of Signal Processing Systems, 2015.
  8. T. Steinbach, F. Korf, and T.C. Schmidt, "Comparing time-triggered Ethernet with FlexRay: An evaluation of competing approaches to real-time for in-vehicle networks," in Proceedings of the IEEE International Workshop on Factory Communication Systems, pp. 199-202, 2010.
  9. Christian Herber, Andre Richter, Thomas Wild, and Andreas Herkersdorf, "Real-time capable CAN to AVB ethernet gateway using frame aggregation and scheduling," in Proceedings of the Conference on Design, Automation and Test in Europe, pp. 61-66, 2015.
  10. Mina Hwang et al., "Performance Evaluation of Low Complexity and Low Cost Automotive Real-Time Ethernet Network," IEIE Conference, Vol. 36, no. 1, pp. 428-431, 2013.
  11. Stefan Kunze, Rainer Poschl, and Andreas Grzemba, "Comparison of Energy Optimization Methods for Automotive Ethernet Using Idealized Analytical Models," Springer Lecture Notes in Mobility, pp. 187-198, 2015.
  12. The Network Simulator - ns-2, [Online]. Available: http://www.isi.edu/nsnam/ns/.