DOI QR코드

DOI QR Code

인쇄회로기판 감광층 보호필름의 레이저 유도 박리

Laser-Driven Peeling of the Photoresist-Protective Film of a Printed Circuit Board

  • 민형석 (연세대학교 신소재공학과) ;
  • 허준연 (연세대학교 신소재공학과) ;
  • 이지영 (연세대학교 신소재공학과) ;
  • 이명규 (연세대학교 신소재공학과)
  • Min, Hyung Seok (Department of Materials Science and Engineering, Yonsei University) ;
  • Heo, Jun Yeon (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Jee Young (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Myeongkyu (Department of Materials Science and Engineering, Yonsei University)
  • 투고 : 2015.04.29
  • 심사 : 2015.08.11
  • 발행 : 2015.10.25

초록

본 논문에서는 인쇄회로기판의 감광층 보호필름을 532 nm 파장의 나노초 레이저의 단일펄스로 박리할 수 있음을 보여준다. 인쇄회로기판의 가장자리를 9 mm 크기의 레이저 빔으로 국부적으로 박리시킨 후 스카치테이프를 레이저 조사에 의해 초기 박리 된 영역에 붙여 전체 보호필름을 떼어내었는데, 160 - 170 mJ의 펄스에너지 범위에서는 10회의 반복된 실험 모두에서 감광층 손상 없는 박리에 성공하였다. 보호필름 초기 박리에 레이저를 사용하는 방식은 기계적 압착에 바탕을 둔 기존의 널링방식과는 달리 감광층에 손상을 유발하지 않는 비접촉 방식으로써, 인쇄회로기판 제조공정에 보다 효율적으로 사용될 수 있을 것으로 판단된다.

In this paper we show that the photoresist-protective film of a printed circuit board (PCB) can be delaminated from the underlying photoresist layer by a single pulse of a nanosecond laser at 532 nm. After locally peeling the edge of the PCB with a laser beam of 9 mm size, Scotch tape was attached to the irradiated region to peel off the whole protective film. For a certain range of pulse energies the peeling probability was 100%, without leaving any damage. Since the use of a laser in initial delamination is noncontact and nondamaging, it may be more efficiently utilized in the PCB industry than the conventional knurling method based on mechanical pressing.

키워드

참고문헌

  1. J. Lee, C. Curran, and K. Watkins, "Laser removal of copper particles from silicon wafers using UV, visible and IR radiation," Applied Physics A: Materials Science & Processing 73, 219-224 (2001). https://doi.org/10.1007/s003390100685
  2. M. Arronte, P. Nerves, and R. Vilar, "Modeling of laser cleaning of metallic particulate contaminants from silicon surfaces," J. Appl. Phys. 92, 6973-6982 (2002). https://doi.org/10.1063/1.1513190
  3. G. Vereecke, E. Rohr, and M. Heyns, "Laser-assisted removal of particles on silicon wafers," J. Appl. Phys. 85, 3837-3843 (1999). https://doi.org/10.1063/1.369754
  4. D. Willis and V. Grosu, "Microdroplet deposition by laser-induced forward transfer," Appl. Phys. Lett. 86, 244103-1-3 (2005). https://doi.org/10.1063/1.1944895
  5. H. Kim, H. Shin, J. Ha, and M. Lee, "Optical patterning of silver nanoparticle Langmuir-Blodgett films," J. Appl. Phys. 102, 083505-1-4 (2007). https://doi.org/10.1063/1.2794971
  6. H. Shin, H. Kim, H. Lee, H. Yoo, J. Kim, H. Kim, and M. Lee, "Photoresist-free lithographc patterning of solution-processed nanostructured metal thin films," Adv. Mater. 20, 3457-3461 (2008). https://doi.org/10.1002/adma.200800157
  7. H. Yoo, H. Shin, B. Shim, S. Kim, and M. Lee, "Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force," Nanotechnology 20, 245301-1-6 (2009). https://doi.org/10.1088/0957-4484/20/24/245301
  8. H. Shin, H. Lee, J. Sung, and M. Lee, "Parallel laser printing of nanoparticulate silver thin film patterns for electronics," Appl. Phys. Lett. 92, 233107-1-3 (2008). https://doi.org/10.1063/1.2944232