DOI QR코드

DOI QR Code

NOTES ON BERGMAN PROJECTION TYPE OPERATOR RELATED WITH BESOV SPACE

  • CHOI, KI SEONG (Department of Information Security Konyang University)
  • 투고 : 2015.07.02
  • 심사 : 2015.07.22
  • 발행 : 2015.08.15

초록

Let Qf be the maximal derivative of f with respect to the Bergman metric $b_B$. In this paper, we will find conditions such that $(1-{\parallel}z{\parallel})^s(Qf)^p(z)$ is bounded on B. We will also find conditions such that Bergman projection type operator $P_r$ is bounded operator from $L^p(B,d{\mu}_r)$ to the holomorphic Besov p-space Bs $B^s_p(B)$ with weight s.

키워드

참고문헌

  1. J. Arazy, S. D. Fisher, and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1054. https://doi.org/10.2307/2374685
  2. K. S. Choi, Notes On the Bergman Projection type operators in ${\mathbb{C}}^n$, Commun. Korean Math. Soc. 21 (2006), no. 1, 65-74. https://doi.org/10.4134/CKMS.2006.21.1.065
  3. K. T. Hahn, Bloch-Besov spaces and the boundary behavior of their functions, Lecture Notes series (Seoul Nat. Univ.) 21 (1993), no. 1.
  4. K. T. Hahn and E. H. Youssfi, M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the unit ball in ${\mathbb{C}}^n$, Jour. Manuscripta Math. 71 (1991), no. 71, 67-81. https://doi.org/10.1007/BF02568394
  5. K. T. Hahn and K. S. Choi, Weighted Bloch spaces in ${\mathbb{C}}^n$, J. Korean Math. Soc. 35 (1998), 177-189.
  6. S. G. Krantz and S-Y. Li, On the decomposition theorems for Hardy spaces in domains in ${\mathbb{C}}^n$ and applications, J. Fourier Anal. Appl. 2 (1995), 65-107. https://doi.org/10.1007/s00041-001-4023-6
  7. S.-Y. Li and W. Loo, Characterization for Besov spaces and applications, Part I, J. Math. Anal. Appl. 310 (2005), 477-491. https://doi.org/10.1016/j.jmaa.2005.02.010
  8. D. H. Luecking, A Technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), 656-660. https://doi.org/10.1090/S0002-9939-1983-0687635-6
  9. W. Rudin, Function theory in the unit ball of ${\mathbb{C}}^n$, Springer Verlag, New York, 1980.
  10. R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc. 12 (1980), 241-267. https://doi.org/10.1112/blms/12.4.241
  11. K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260-278. https://doi.org/10.1016/0022-1236(88)90100-0
  12. K. H. Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J. Funct. Anal. 87 (1989), 31-50. https://doi.org/10.1016/0022-1236(89)90003-7
  13. K. H. Zhu, Operator theory in function spaces, Marcel Dekker, New York, (1990).