참고문헌
- J. Arazy, S. D. Fisher, and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1054. https://doi.org/10.2307/2374685
-
K. S. Choi, Notes On the Bergman Projection type operators in
${\mathbb{C}}^n$ , Commun. Korean Math. Soc. 21 (2006), no. 1, 65-74. https://doi.org/10.4134/CKMS.2006.21.1.065 - K. T. Hahn, Bloch-Besov spaces and the boundary behavior of their functions, Lecture Notes series (Seoul Nat. Univ.) 21 (1993), no. 1.
-
K. T. Hahn and E. H. Youssfi, M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the unit ball in
${\mathbb{C}}^n$ , Jour. Manuscripta Math. 71 (1991), no. 71, 67-81. https://doi.org/10.1007/BF02568394 -
K. T. Hahn and K. S. Choi, Weighted Bloch spaces in
${\mathbb{C}}^n$ , J. Korean Math. Soc. 35 (1998), 177-189. -
S. G. Krantz and S-Y. Li, On the decomposition theorems for Hardy spaces in domains in
${\mathbb{C}}^n$ and applications, J. Fourier Anal. Appl. 2 (1995), 65-107. https://doi.org/10.1007/s00041-001-4023-6 - S.-Y. Li and W. Loo, Characterization for Besov spaces and applications, Part I, J. Math. Anal. Appl. 310 (2005), 477-491. https://doi.org/10.1016/j.jmaa.2005.02.010
- D. H. Luecking, A Technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), 656-660. https://doi.org/10.1090/S0002-9939-1983-0687635-6
-
W. Rudin, Function theory in the unit ball of
${\mathbb{C}}^n$ , Springer Verlag, New York, 1980. - R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc. 12 (1980), 241-267. https://doi.org/10.1112/blms/12.4.241
- K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260-278. https://doi.org/10.1016/0022-1236(88)90100-0
- K. H. Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J. Funct. Anal. 87 (1989), 31-50. https://doi.org/10.1016/0022-1236(89)90003-7
- K. H. Zhu, Operator theory in function spaces, Marcel Dekker, New York, (1990).