NOTES ON BERGMAN PROJECTION TYPE OPERATOR RELATED WITH BESOV SPACE

Ki Seong Choi*

Abstract

Let $Q f$ be the maximal derivative of f with respect to the Bergman metric b_{B}. In this paper, we will find conditions such that $(1-\|z\|)^{s}(Q f)^{p}(z)$ is bounded on B. We will also find conditions such that Bergman projection type operator P_{r} is bounded operator from $L^{p}\left(B, d \mu_{r}\right)$ to the holomorphic Besov pspace $\mathcal{B}_{p}^{s}(B)$ with weight s.

1. Introduction

Throughout this paper, \mathbb{C}^{n} will be the Cartesian product of n copies of \mathbb{C}. For $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ in \mathbb{C}^{n}, the inner product is defined by $\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \overline{w_{j}}$ and the norm by $\|z\|^{2}=$ $\langle z, z\rangle$.

Let Ω be any bounded domain in \mathbb{C}^{n}. Let $f \in C^{1}(\Omega)$ and $\xi \in \mathbb{C}^{n}$. The maximal derivative of f with respect to the Bergman metric b_{Ω} is defined by

$$
\hat{Q} f(z)=\sup _{\|\xi\|=1} \frac{|\langle d f(z), \xi\rangle|}{b_{\Omega}(z, \xi)}, z \in \Omega
$$

where

$$
\langle d f(z), \xi\rangle=\sum_{i=1}^{n}\left[\frac{\partial f(z)}{\partial z_{i}} \xi_{i}+\frac{\partial f(z)}{\partial \bar{z}_{i}} \bar{\xi}_{i}\right] .
$$

If $f \in H(\Omega)$ where $H(\Omega)$ is the set of holomorphic functions on Ω, then the quantity $\hat{Q} f$ is reduced to

$$
Q f(z)=\sup _{\|\xi\|=1} \frac{|\langle\nabla f(z), \xi\rangle|}{b_{\Omega}(z, \xi)}, \quad z \in \Omega, \quad \xi \in \mathbb{C}^{n}
$$

where $\nabla f(z)=\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}\right)$ is the holomorphic gradient of f.

[^0]For Lebesgue measure ν in \mathbb{C}^{n}, let $d \lambda(z)=K(z, z) d \nu(z)$ where $K(z, w)$ is Bergman kernel. Let $\delta_{\Omega}(z)$ be the Euclidean distance from z to the boundary $\partial \Omega$. For $0<p<\infty$ and $s \in \mathbb{R}$, the holomorphic Besov p-sapce $\mathcal{B}_{p}^{s}(\Omega)$ with weight s is defined by the space of all holomorphic functions f on Ω such that

$$
\|f\|_{p, s}=\left\{\int_{\Omega}(Q f)^{p}(z) \delta_{\Omega}(z)^{s} d \lambda(z)\right\}^{\frac{1}{p}}<\infty
$$

In this paper, we will consider the case where Ω is open unit ball in \mathbb{C}^{n}. Let B be the open unit ball in the complex space \mathbb{C}^{n} and S the boundary of B. For $z \in B, \xi \in \mathbb{C}^{n}$, the Bergman metric(on B) $b_{B}: B \times \mathbb{C}^{n} \longrightarrow R$ is given by

$$
b_{B}^{2}(z, \xi)=\frac{n+1}{\left(1-\|z\|^{2}\right)^{2}}\left[\left(1-\|z\|^{2}\right)\|\xi\|^{2}+|\langle z, \xi\rangle|^{2}\right] .
$$

The quantity $Q f$ for the unit ball B is invariant under the group $\operatorname{Aut}(B)$ of holomorphic automorphisms of B. Namely, $Q(f \circ \varphi)=(Q f) \circ$ φ for all $\varphi \in \operatorname{Aut}(B)$.

Let ν be the Lebesgue measure in \mathbb{C}^{n} normalized by $\nu(B)=1$. The Bergman space $L_{a}^{2}(B, d \nu)$ is defined to be the subspace of $L^{2}(B, d \nu)$ consisting of analytic functions.

Fix a point $z \in B$. Since the functional e_{z} given by $e_{z}(f)=f(z), f \in$ $L_{a}^{2}(B, d \nu)$, is continuous, there exists a function $K(\cdot, z) \in L_{a}^{2}(B, d \nu)$ such that

$$
f(z)=\int_{B} f(w) \overline{K(w, z)} d \nu(w)
$$

by the Riesz representation theorem. The function $K(z, w)$ is called the Bergman reproducing kernel in $L_{a}^{2}(B, d \nu)$. It is well known that $K(z, w)=\frac{1}{(1-\langle z, w\rangle)^{n+1}}($ See $[9])$.

Let $0<p<\infty$ and $s \in \mathbb{R}$. The holomorphic Besov p-spaces $\mathcal{B}_{p}^{s}(B)$ with weight s is defined by the space of all holomorphic functions f on the unit ball B such that

$$
\|f\|_{p, s}=\left\{\int_{B}(Q f)^{p}(z)\left(1-\|z\|^{2}\right)^{s} d \lambda(z)\right\}^{\frac{1}{p}}<\infty
$$

Here $d \lambda(z)=K(z, z) d \nu(z)=\left(1-\|z\|^{2}\right)^{-n-1} d \nu(z)$ is an invariant volume measure with respect to the Bergman metric on B.

For a fixed $p \in(0, \infty), \mathcal{B}_{p}^{s}(B)$ is an increasing family of function spaces in s; that is, if $-\infty<s \leq t<+\infty$, then $\mathcal{B}_{p}^{s}(B) \subset \mathcal{B}_{p}^{t}(B)$. The holomorphic Besov p-space $\mathcal{B}_{p}^{s}(B)$ with weight s include many well
known spaces as special case. $\mathcal{B}_{p}^{s}(B)$ is the usual Hardy space $H^{p}(B)$ for $s=n$, the Bergman space $L_{a}^{p}(B)$ for $s=n+1$. In particular, the diagonal Besov space $\mathcal{B}_{p}^{0}(B)$ are shown to be the Möbius invariant subsets of the Bloch space(See [3]).

In recent years, there have been many papers focused on studying the Besov space and it's applications(See [4],[6],[7] and [10]).

In section 2, we will find conditions such that $(1-\|z\|)^{s}(Q f)^{p}(z)$ is bounded on B.

The orthogonal projection operator P from $L^{2}(B, d \nu)$ to $L_{a}^{2}(B, d \nu)$ is denoted by

$$
\operatorname{Pf}(z)=\int_{B} f(w) K(z, w) d \nu(w)
$$

P is called the Bergman projection. The Bergman projection is used in many areas related with Hankel operators and Toeplitz operators(See [1], [8], [11] and [12]).

The measure μ_{r} is the weighted Lebesgue measure:

$$
d \mu_{r}(z)=c_{r}\left(1-\|z\|^{2}\right)^{r} d \nu(z)
$$

where $r>-1$ is fixed, and c_{r} is a normalization constant such that $\mu_{r}(B)=1$. Define the Bergman projection type operator P_{r} by

$$
P_{r} f(z)=\int_{B} \frac{f(w)}{(1-\langle z, w\rangle)^{n+r+1}} d \mu_{r}(w)
$$

In section 3, we will find conditions such that P_{r} is bounded operator from $L^{p}\left(B, d \mu_{r}\right)$ to the holomorphic Besov p-spaces $\mathcal{B}_{p}^{s}(B)$ with weight s.

2. Holomorphic Besov p-space $\mathcal{B}_{p}^{s}(B)$ with weight s

The traditional holomorphic Besov space $\mathcal{B}_{p}(\Omega)$ is a subspace of $L_{a}^{2}(\Omega)$ with semi-norm

$$
\|f\|_{\mathcal{B}_{p}}=\left\{\int_{\Omega}(\nabla f)^{p}(z) \delta_{\Omega}(z)^{p} d \lambda(z)\right\}^{\frac{1}{p}}<\infty
$$

where $\delta_{\Omega}(z) / 2$ is the distance from z to $\partial \Omega$. It is known that the fact $\int_{\Omega} \delta_{\Omega}(z)^{-q} d \nu(z)=\infty$ when $q \geq 1$ implies that $\mathcal{B}_{p}(\Omega)=\mathbb{C}$ when $p \leq n$ and Ω is a smoothly bounded strictly pseudo convex domain in \mathbb{C}^{n}.

If Ω is the unit ball B in \mathbb{C}^{n} and ν is the Lebesgue measure in \mathbb{C}^{n} normalized by $\nu(\Omega)=1$, we can find the following result.

Theorem 2.1. Let $n \geq 2$ and $0<p \leq 2 n$. If $f \in H(B)$ and

$$
\int_{B}(Q f)^{p}(z) d \lambda(z)<\infty
$$

then f is constant.
Proof. See [3], Lemma 2.11.
These results show that the above semi-norm is not natural when $p \leq n$. In this paper, we will consider the holomorphic Besov p-space $\mathcal{B}_{p}^{s}(B)$ with weight s.

Let $a \in B$ and let P_{a} be the orthogonal projection of \mathbb{C}^{n} onto the subspace generated by a, which is given by $P_{0}=0$, and

$$
P_{a} z=\frac{\langle z, a\rangle}{\langle a, a\rangle} a, \quad \text { if } \quad a \neq 0 .
$$

Let $Q_{a}=I-P_{a}$. Define φ_{a} on B by

$$
\varphi_{a}(z)=\frac{a-P_{a} z-\sqrt{1-\|a\|^{2}} Q_{a} z}{1-\langle z, a\rangle} .
$$

Theorem 2.2. For every $a \in B, \varphi_{a}$ has the following properties:
(i) The identity

$$
1-\left\langle\varphi_{a}(z), \varphi_{a}(w)\right\rangle=\frac{\left(1-\|a\|^{2}\right)(1-\langle z, w\rangle)}{(1-\langle z, a\rangle)(1-\langle a, w\rangle)}
$$

holds for all $z \in \bar{B}, w \in \bar{B}$.
(ii) The identity

$$
1-\left\|\varphi_{a}(z)\right\|^{2}=\frac{\left(1-\|a\|^{2}\right)\left(1-\|z\|^{2}\right)}{|1-\langle z, a\rangle|^{2}}
$$

holds for every $z \in \bar{B}$.
(iii) φ_{a} is a homeomorphism of \bar{B} onto \bar{B}.

Proof. See [9], Theorem 2.2.2.
Theorem 2.3. For $z \in B, c$ is real, $t>-1$, define

$$
I_{c, t}(z)=\int_{B} \frac{\left(1-\|w\|^{2}\right)^{t}}{|1-\langle z, w\rangle|^{n+1+c+t}} d \nu(w) .
$$

Then,
(i) $I_{c, t}(z)$ is bounded in B if $c<0$;
(ii) $I_{0, t}(z) \approx-\log \left(1-\|z\|^{2}\right)$ as $\|z\| \rightarrow 1^{-}$;
(iii) $I_{c, t}(z) \approx\left(1-\|z\|^{2}\right)^{-c}$ as $\|z\| \rightarrow 1^{-}$if $c>0$.

Proof. See [9], Proposition 1.4.10.
Lemma 2.4. If f is holomorphic and $\frac{Q f(w)}{1-\|w\|^{2}}$ is Lebesgue integrable on B, then

$$
Q f(0) \leq(n+1) \int_{B} Q f(w)\left(1-\|w\|^{2}\right)^{n} d \lambda(w)
$$

Proof. By the definition of Bergman metric,

$$
\begin{aligned}
b_{B}^{2}(z, \xi) & =(n+1) \frac{\left(1-\|z\|^{2}\right)\|\xi\|^{2}+|\langle z, \xi\rangle|^{2}}{\left(1-\|z\|^{2}\right)^{2}} \\
& \leq(n+1) \frac{\left(1-\|z\|^{2}\right)\|\xi\|^{2}+\|z\|^{2}\|\xi\|^{2}}{\left(1-\|z\|^{2}\right)^{2}} \\
& \leq(n+1) \frac{\|\xi\|^{2}}{\left(1-\|z\|^{2}\right)^{2}}
\end{aligned}
$$

By the mean value theorem,

$$
f(t \eta)=\int_{B} f \circ \varphi_{t \eta}(w) d \nu(w)
$$

for $f \in H(B), \eta \in B$ and $t \in[0,1]$.

$$
\begin{aligned}
|\langle\nabla f(0), \eta\rangle| & =\left|\int_{B}\left\langle\nabla f(-w),\left[\frac{d}{d t} \varphi_{t \eta}(w)\right]_{t=0}\right\rangle d \nu(w)\right| \\
& =\left|\int_{B}\langle\nabla f(-w), \eta-\langle w, \eta\rangle w\rangle d \nu(w)\right| \\
& \leq \int_{B} \frac{\left|\left\langle\nabla f(-w), \frac{\eta-\langle w, \eta\rangle w}{\|\eta-\langle w, \eta\rangle w\|}\right\rangle\right|_{B}\left(-w, \frac{\eta-\langle w, \eta\rangle w}{\|\eta-\langle w, \eta\rangle w\|}\right)}{b_{B}(-w, \eta-\langle w, \eta\rangle w) d \nu(w)} \\
& \leq(n+1) \int_{B} Q f(w) b_{B}(-w, \eta-\langle w, \eta\rangle w) d \nu(w) \\
& \leq(n+1) \int_{B} \frac{Q f(w)}{1-\|w\|^{2}} d \nu(w) \\
& \leq(n+1) \int_{B}\left(1-\|w\|^{2}\right)^{n} Q f(w) d \lambda(w)
\end{aligned}
$$

Thus,

$$
Q f(0) \leq(n+1) \int_{B} Q f(w)\left(1-\|w\|^{2}\right)^{n} d \lambda(w)
$$

Theorem 2.5. Let $1<p<\infty$. If s is a real number such that $-n p<s<n$ and $\|f\|_{p, s}<\infty$, then $\left(1-\|z\|^{2}\right)^{s}(Q f)^{p}(z)$ is bounded on B.

Proof. Let $\frac{1}{p}+\frac{1}{q}=1$ where $q>1$. If $s<n$, then $t=(n-s) q+s-$ $n-1>-1$. If $-n p<s$, then $n q+s q-s>0$. By Theorem 2.3,

$$
\begin{aligned}
& \left(\int_{B} \frac{\left(1-\|\xi\|^{2}\right)^{(n-s) q}}{|1-\langle z, \xi\rangle|^{2 n q}}\left(1-\|\xi\|^{2}\right)^{s} d \lambda(\xi)\right)^{1 / q} \\
& =\left(\int_{B} \frac{\left(1-\|\xi\|^{2}\right)^{t}}{|1-\langle z, \xi\rangle|^{n+1+t+(n q+s q-s)}} d \nu(\xi)\right)^{1 / q} \\
& \approx\left(1-\|z\|^{2}\right)^{-n-s+s / q} \\
& \approx\left(1-\|z\|^{2}\right)^{-n-s / p} .
\end{aligned}
$$

By Lemma 2.4,

$$
Q f(0) \leq(n+1) \int_{B} Q f(w)\left(1-\|w\|^{2}\right)^{n} d \lambda(w)
$$

Put $\xi=\varphi_{z}(w)$. By Theorem 2.2,

$$
\begin{aligned}
Q f(z) & =Q\left(f \circ \varphi_{z}\right)(0) \\
& \leq(n+1) \int_{B} Q\left(f \circ \varphi_{z}\right)(w)\left(1-\|w\|^{2}\right)^{n} d \lambda(w) \\
& \leq(n+1) \int_{B} Q f(\xi)\left(1-\left\|\varphi_{z}(\xi)\right\|^{2}\right)^{n} d \lambda(\xi) \\
& \leq(n+1) \int_{B} Q f(\xi) \frac{\left(1-\|z\|^{2}\right)^{n}\left(1-\|\xi\|^{2}\right)^{n}}{|1-\langle z, \xi\rangle|^{2 n}} d \lambda(\xi) \\
\leq & (n+1)\left(1-\|z\|^{2}\right)^{n}\left(\int_{B}(Q f)^{p}(\xi)\left(1-\|\xi\|^{2}\right)^{s} d \lambda(\xi)\right)^{1 / p} \\
& \quad\left(\int_{B} \frac{\left(1-\|\xi\|^{2}\right)^{(n-s) q}}{|1-\langle z, \xi\rangle|^{2 n q}}\left(1-\|\xi\|^{2}\right)^{s} d \lambda(\xi)\right)^{1 / q}
\end{aligned}
$$

where the last inequality follows from Hölder inequality for $\frac{1}{p}+\frac{1}{q}=1$. This implies that

$$
Q f(z) \leq C\left(1-\|z\|^{2}\right)^{-s / p}\|f\|_{p, s}
$$

for some constant C. This shows that if s is a real number such that $-n p<s<n$ and $\|f\|_{p, s}<\infty$, then $\left(1-\|z\|^{2}\right)^{s}(Q f)^{p}(z)$ is bounded on B.

3. Bounded Bergman projection type operator related with Besov space

In [10], Timoney showed that the linear space of all holomorphic function $f: B \longrightarrow \mathbb{C}$ which satisfy

$$
\sup _{z \in B}\left(1-\|z\|^{2}\right)\|\nabla f(z)\|<\infty
$$

is equivalent to the space of all holomorphic function which satisfy

$$
\sup _{z \in B} Q f(z)<\infty
$$

Theorem 3.1. Let $p>2 n$ and $s>n$. Then for every $f \in H(B)$,
$\int_{B}(Q f)^{p}(z)\left(1-\|z\|^{2}\right)^{s} d \lambda(z) \approx \int_{B}\|\nabla f(z)\|^{p}\left(1-\|z\|^{2}\right)^{p+s} d \lambda(z)$
Proof. See [3], Lemma 2.8.
Let $L_{a, r}^{2}=L_{a}^{2}\left(B, d \mu_{r}\right)$ be the subspace of $L^{2}\left(B, d \mu_{r}\right)$ consisting of analytic functions. If we equip $L_{a, r}^{2}$ with the norm $\|f\|_{2, r}=\sqrt{\int_{B}|f|^{2} d \mu_{r}}$, then $L_{a, r}^{2}$ is a Banach space for each $r>-1$.

Fix a point $z \in B$. Since the functional e_{z} given by $e_{z}(f)=f(z), f \in$ $L_{a, r}^{2}$, is continuous, there exists a function $k_{r, z} \in L_{a, r}^{2}$ such that

$$
f(z)=\int_{B} f(w) \overline{k_{r, z}(w)} d \mu_{r}(w)
$$

by the Riesz representation theorem. The function $K_{r}(z, w)=\overline{k_{r, z}(w)}$ is called the weighted Bergman kernel. Also it is well known that

$$
K_{r}(z, w)=\frac{1}{(1-\langle z, w\rangle)^{r+n+1}}
$$

(See [9]). It was shown in [5] that if $f \in L_{a, r}^{1}, r>-1$, then

$$
f(z)=\int_{B} \frac{f(w)}{(1-\langle z, w\rangle)^{n+r+1}} d \mu_{r}(w)
$$

Suppose $1 \leq p<+\infty$ and $r>0$. Let $L_{a, r}^{p}$ be the subspace of $L^{p}\left(B, d \mu_{r}\right)$ consisting of analytic functions. Define Bergman projection type operator P_{r} by

$$
P_{r} f(z)=\int_{B} \frac{f(w)}{(1-\langle z, w\rangle)^{n+r+1}} d \mu_{r}(w)
$$

Since $P_{r} f=f$ for all analytic f in $L^{1}\left(B, d \mu_{r}\right), P_{r}$ is a projection from $L^{1}\left(B, d \mu_{r}\right)$ onto $L_{a}^{1}\left(B, d \mu_{r}\right)$.

In [2], the author proved that P_{r} is a bounded projection operator from $L^{p}(B, d \nu)$ onto $L_{a}^{p}(B, d \nu)$.

In the proof of Theorem 3.2, we will use $C_{n, r}$ to denote constant depending only on n and r, but it is not always the same at each appearance.

Theorem 3.2. Let $p>2 n$ and $r>0$. If $f \in L^{p}\left(B, d \mu_{r}\right)$, then

$$
\left\|P_{r} f\right\|_{p, s} \leq C_{n, r}\|f\|_{L^{p}\left(B, d \mu_{r}\right)}
$$

for $s>2 n+r+1$.
Proof. Differentiating under the integral sign, we obtain

$$
\frac{\partial}{\partial z_{j}}\left(P_{r} f\right)(z)=(n+r+1) \int_{B} \frac{f(w)\left(-\overline{w_{j}}\right)}{(1-\langle z, w\rangle)^{n+r+2}} d \mu_{r}(w)
$$

for $j=1,2, \cdots, n$. This shows that

$$
\left\|\nabla P_{r} f(z)\right\| \leq C_{n, r} \int_{B} \frac{|f(w)|}{|1-\langle z, w\rangle|^{n+r+2}} d \mu_{r}(w)
$$

Let $\frac{1}{p}+\frac{1}{q}=1$. By the Hölder inequality,

$$
\begin{aligned}
& \left\|\nabla P_{r} f(z)\right\|^{p} \\
& \leq\left(C_{n, r} \int_{B} \frac{|f(w)|}{|1-\langle z, w\rangle|^{n+r+2}} d \mu_{r}(w)\right)^{p} \\
& =C_{n, r} \int_{B}|f(w)|^{p} d \mu_{r}(w)\left(\int_{B} \frac{1}{|1-\langle z, w\rangle|^{q(n+r+2)}} d \mu_{r}(w)\right)^{p / q} .
\end{aligned}
$$

By Theorem 2.3,

$$
\begin{aligned}
& \int_{B} \frac{1}{|1-\langle z, w\rangle|^{q(n+r+2)}} d \mu_{r}(w) \\
& =c_{r} \int_{B} \frac{\left(1-\|w\|^{2}\right)^{r}}{|1-\langle z, w\rangle|^{q(n+r+2)}} d \nu(w) \\
& =c_{r} \int_{B} \frac{\left(1-\|w\|^{2}\right)^{r}}{|1-\langle z, w\rangle|^{n+1+r+1+(q-1)(n+r+2)}} d \nu(w) \\
& \approx\left(1-\|z\|^{2}\right)^{-1-(q-1)(n+r+2)} .
\end{aligned}
$$

By Theorem 3.1,

$$
\begin{aligned}
\left\|P_{r} f\right\|_{p, s}^{p}= & \int_{B}\left(Q P_{r} f\right)^{p}(z)\left(1-\|z\|^{2}\right)^{s} d \lambda(z) \\
\approx & \int_{B}\left(1-\|z\|^{2}\right)^{p}\left\|\nabla P_{r} f(z)\right\|^{p}\left(1-\|z\|^{2}\right)^{s} d \lambda(z) \\
\leq & C_{n, r}\|f\|_{L^{p}\left(B, d \mu_{r}\right)}^{p} \int_{B}\left(1-\|z\|^{2}\right)^{p} \\
& \left(\int_{B} \frac{1}{|1-\langle z, w\rangle|^{q(n+r+2)}} d \mu_{r}(w)\right)^{p / q}\left(1-\|z\|^{2}\right)^{s} d \lambda(z) \\
\leq & C_{n, r}\|f\|_{L^{p}\left(B, d \mu_{r}\right)}^{p} \\
& \quad \int_{B}\left(1-\|z\|^{2}\right)^{p+s-n-1-(p / q)(1+(q-1)(n+r+2))} d \nu(z)
\end{aligned}
$$

If $s>n-p+(p / q)(1+(q-1)(n+r+2))=2 n+r+1$, then

$$
\left\|P_{r} f\right\|_{p, s} \leq C_{n, r}\|f\|_{L^{p}\left(B, d \mu_{r}\right)}
$$

References

[1] J. Arazy, S. D. Fisher, and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1054.
[2] K. S. Choi, Notes On the Bergman Projection type operators in C^{n}, Commun. Korean Math. Soc. 21 (2006), no. 1, 65-74.
[3] K. T. Hahn, Bloch-Besov spaces and the boundary behavior of their functions, Lecture Notes series (Seoul Nat. Univ.) 21 (1993), no. 1.
[4] K. T. Hahn and E. H. Youssfi, M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the unit ball in \mathbb{C}^{n}, Jour. Manuscripta Math. 71 (1991), no. 71, 67-81.
[5] K. T. Hahn and K. S. Choi, Weighted Bloch spaces in \mathbb{C}^{n}, J. Korean Math. Soc. 35 (1998), 177-189.
[6] S. G. Krantz and S-Y. Li, On the decomposition theorems for Hardy spaces in domains in \mathbb{C}^{n} and applications, J. Fourier Anal. Appl. 2 (1995), 65-107.
[7] S.-Y. Li and W. Loo, Characterization for Besov spaces and applications, Part I, J. Math. Anal. Appl. 310 (2005), 477-491.
[8] D. H. Luecking, A Technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), 656-660.
[9] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Springer Verlag, New York, 1980.
[10] R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc. 12 (1980), 241-267.
[11] K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260-278.
[12] K. H. Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J. Funct. Anal. 87 (1989), 31-50.
[13] K. H. Zhu, Operator theory in function spaces, Marcel Dekker, New York, (1990).
*
Department of Information Security Konyang University
Nonsan 320-711, Republic of Korea
E-mail: ksc@konyang.ac.kr

[^0]: Received July 02, 2015; Accepted July 22, 2015.
 2010 Mathematics Subject Classification: Primary 30H05; Secondary $28 B 15$.
 Key words and phrases: Besov p-space, Bergman projection.

