DOI QR코드

DOI QR Code

An Experimental Study on the Time-Dependent Deformation of the Alkali Activated Slag Concrete

알칼리 활성 슬래그 콘크리트의 시간의존적 변형에 관한 실험적 연구

  • Lee, Young-Jun (Department of Architecture and Ocean Space, Korea Maritime and Ocean University) ;
  • Kwon, Eun-Hee (Department of Architecture and Ocean Space, Korea Maritime and Ocean University) ;
  • Park, Dong-Cheon (Department of Architecture and Ocean Space, Korea Maritime and Ocean University)
  • Received : 2015.04.29
  • Accepted : 2015.07.20
  • Published : 2015.10.20

Abstract

The alternative material for cement has been attracting attention in construction projects. Especially, the alkali activated slag(hereafter, AAS) concrete is able to use for a structural vertical member because of 40MPa of compressive strength, However, the research about time-dependent deformation such as creep which is important to strength member is insufficient. Therefore, in this study, experiments were performed with respect to time-dependent deformation including the drying shrinkage and creep deformation of AAS concrete. The creep deformed ratio of AAS concrete was more than OPC concrete by approximately 4.3% and the dry shrinkage deformation of AAS concrete was more than OPC concrete by approximately 69%. The large amount of sodium silicate, alkali activator, is added causing temperature crack than promoted drying and drying creep which is confirmed by water ration test and SEM.

지속적으로 증가하고 있는 이산화탄소 배출량을 저감시키기 위한 국제사회의 노력과 더불어 건설업계, 특히 시멘트 산업에서 알칼리 활성화제를 첨가한 알칼리 활성 슬래그를 활용하고자 하는 연구가 다수 수행되고 있다. 연구결과로 알칼리 활성 슬래그 모르타르의 고강도화 가능성이 밝혀지면서 초고층 구조물에 대한 적용가능성이 검토되고 있다. 그러나 초고층 구조물의 부재로 사용되기 위해서는 시간의 존 변형 거동에 관한 연구가 중요함에도 불구하고 굉장히 미흡한 실정이다. 따라서 본 연구에서는 OPC와 AAS를 이용한 콘크리트 시험체를 제작하여 크리프와 건조수축을 측정하고 도출된 결과값을 ACI 209R-92, CEB-FIP(1990)의 예측모델을 이용한 비선형 회귀분석을 통해 시간의존 변형 특성을 분석하였다. 각각의 열분석 및 SEM촬영을 통해 변형 발생 메카니즘을 규명하고자 하였다.

Keywords

References

  1. Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, Van Vuuren DP, Le Quere C. Persistent growth of CO2 emissions and implications for reaching climate targets. 2014 Sep;21(7):209-15.
  2. Yang KH, Oh SJ, Song JG. Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates, Journal of the Korea Concrete Institute, 2008 Jun;20(3):405-12. https://doi.org/10.4334/JKCI.2008.20.3.405
  3. Song GI, Sin GS, Gong MH, Song JG. Basic Research of Self Compacting Concrete Using Alkali-Activated Slag Binder, Journal of the Korea Concrete Institute, 2013 Dec;25(6):657-65. https://doi.org/10.4334/JKCI.2013.25.6.657
  4. Lee KM, Song JG, Evaluation of Flexural Behavior of Reinforced Concrete Beams Using Alkali Activated Slag Concrete, Journal of the Korea Concrete Institute, 2015 Jun;27(3):307-13.
  5. Oh SH. Study on compressive strength and flowing characteristics of alkali-activated mortar containing blast furnace slag [dissertation]. [Seoul (Korea)], Sungkyunkwan University; 2011. 57 p.
  6. Yang WH. Properties of Alkali-Activated Portland Blast-furnace Slag Cement Concrete : Using Sodium Sulfate and Light-burnt Dolomite as Activators [dissertation]. [Seoul (Korea)], KonKuk University; 2014. 98 p.