DOI QR코드

DOI QR Code

Microbial community structures in the ground bed cultivation of Lentinula edodes using oak sawdust

참나무 톱밥을 이용한 표고 지면재배 과정의 주요 미생물 군집 분석

  • Shin, Ji-Hye (Department of Microbiology, Chungbuk National University) ;
  • Yun, Seo-Yeon (Department of Microbiology, Chungbuk National University) ;
  • Nam, Ji-Hyun (Department of Environmental Engineering and Energy, Myongji University) ;
  • Koo, Chang-Duck (Department of Forest Science, Chungbuk National University) ;
  • Lee, Dong-Hun (Department of Microbiology, Chungbuk National University)
  • 신지혜 (충북대학교 미생물학과) ;
  • 윤서연 (충북대학교 미생물학과) ;
  • 남지현 (명지대학교 환경에너지공학과) ;
  • 구창덕 (충북대학교 산림학과) ;
  • 이동훈 (충북대학교 미생물학과)
  • Received : 2015.08.25
  • Accepted : 2015.09.22
  • Published : 2015.09.30

Abstract

Ground bed cultivation method for shiitake mushroom (Phogo; Lentinula edodes) has been advanced to use the oak-sawdust composted by microorganisms. This method has some advantages in saving the labors and improving productivity. The aim of this study is to analyze microbial community in oak sawdust and to provide the information for efficient cultivation of shiitake mushroom. In process of composting, the proportions of thermophiles increased from 10% to 80%. This results show the microbial community succession from mesophilic bacteria to thermophilic bacteria. T-RFLP analysis and nucleotide sequencing of 16S rRNA gene demonstrated that the change of dominant bacteria coupled with shifts in each stages. The family of Enterobacteriaceae as a mesophilic bacteria were dominant (100%) in oak sawdust sample, but Amycolatopsis (49.0%) and Saccharopolyspora (26.5%) as a thermophilic Actinomycetes were dominant in the last day of composting. In hyphal growth stage, Leuconostoc (psychrophilic bacteria) was dominant (75.0%). The composting process of sawdust is very important for growth of mushroom mycelium. Therefore, there is need for the further study for the Amycolatopsis as thermophilic Actinomycetes.

톱밥발효를 이용한 표고버섯의 지면재배방법은 적은 노동력을 소요하고 표고의 생산력을 증대시킬 수 있는 방법이다. 이 방법은 미생물에 의한 참나무 톱밥의 발효과정과 표고균사를 접종하고 생장시키는 과정의 두 단계로 나누어진다. 본 연구에서는 참나무 톱밥을 이용한 표고 지면재배과정의 각 단계에서 우점하는 주요 미생물을 확인하고 효율적인 표고버섯 재배를 위한 정보를 제공하고자 하였다. 발효과정이 진행되며 온도가 상승함에 따라 톱밥의 고온 세균의 비율은 10%에서 80%까지 증가하여 중온성 세균에서 고온성 세균으로 군집의 천이가 확인되었다. 16S rRNA 유전자를 이용한 T-RFLP 방법과 염기서열 분석 방법으로 참나무 톱밥 지면재배과정의 단계별 미생물 군집의 변화를 확인했다. 발효 전 참나무 톱밥시료에서는 중온성 세균인 Enterobacteriaceae 과의 세균이 우점(100%)하였고, 발효가 진행되며 Amycolatopsis (49.0%), Saccharopolyspora (26.5%) 등의 고온성 방선균으로 미생물 군집의 천이가 발생되었다. 특히, Amycolatopsis 속이 최고온도가 유지되는 발효과정 중에도 항상 우점한 결과를 고려하면 발효를 주도하는 미생물이라고 생각된다. 균사생장시기에서는 저온성 세균인 Leuconostoc이 우점(75.0%)하였다. 표고 균사의 활발한 성장을 위해서는 참나무 톱밥의 발효과정이 매우 중요하기 때문에 발효과정에서 우점한 고온성 방선균인 Amycolatopsis 속에 관한 다양한 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Allgaier, M., Reddy, A., Park, J.I., Ivanova, N., D'Haeseleer, P., Lowry, S., Sapra, R., Hazen, T.C., Simmons, B.A., Vander Gheynst, J.S., et al. 2010. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS One 5, 1-9.
  2. Badham, E.R. 1991. Growth and competition between Lentinus edodes and Trichoderma harzianum on sawdust substrates. Mycologia 83, 455-463. https://doi.org/10.2307/3760356
  3. Bala, S., Khanna, R., Dadhwal, M., Prabagaran, S.R., Shivaji, S., Cullum, J., and Lal, R. 2004. Reclassification of Amycolatopsis mediterranei DSM 46095 as Amycolatopsis rifamycinica sp. nov. Int. J. Syst. Evol. Microbiol. 54, 1145-1149. https://doi.org/10.1099/ijs.0.02901-0
  4. Chun, J., Huq, A., and Colwell, R.R. 1999. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl. Environ. Microbiol. 65, 2202-2208.
  5. Duchaine, C., Mériaux, A., Brochu, G., Bernard, K., and Cormier, Y. 1999. Saccharopolyspora rectivirgula from Quebec dairy barns: Application of simplified criteria for the identification of an agent responsible for farmer's lung disease. J. Med. Microbiol. 48, 173-180. https://doi.org/10.1099/00222615-48-2-173
  6. Fergus, C.L. 1964. Thermophilic and thermotolerant molds and actinomycetes of mushrom compost during peak heating. Mycol. Soc. Am. 56, 267-284.
  7. Finstein, M.S., Miller, F.C., Strom, P.F., MacGregor, S.T., and Psarianos, K.M. 1983. Composting ecosystem management for waste treatment. Bio. Technol. 1, 347-353. https://doi.org/10.1038/nbt0683-347
  8. Fode-vaughan, K.A., Wimpee, C.F., Remsen, C., and Lynne, M. 2001. Detection of bacteria in environmental samples by direct PCR without DNA extraction research report. Biotechniques 31, 598-607.
  9. Goodfellow, M., Kim, S.B., Minnikin, D.E., Whitehead, D., Zhou, Z.H., and Mattinson-Rose, A.D. 2001. Amycolatopsis sacchari sp. nov., a moderately thermophilic actinomycete isolated from vegetable matter. Int. J. Syst. Evol. Microbiol. 51, 187-193. https://doi.org/10.1099/00207713-51-1-187
  10. Hong, J.S. 1980. Nutrition value and medicine efficacy of mushroom. Food Ind. 53, 79-83.
  11. Iiyama, K., Stone, B.A., and Macauley, B.J. 1994. Compositional changes in compost during composting and growth of Agaricus bisporus. Appl. Environ. Microbiol. 60, 1538-1546.
  12. Jess, S., Murchie, A.K., and Bingham, J.F.W. 2007. Potential sources of sciarid and phorid infestations and implications for centralised phases I and II mushroom compost production. Crop. Prot. 26, 455-464. https://doi.org/10.1016/j.cropro.2006.04.015
  13. Kim, J., Chun, J., and Han, H.U. 2000. Leuconostoc kimchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Microbiol. 50, 1915-1919. https://doi.org/10.1099/00207713-50-5-1915
  14. Koo, C.D., Lee, H.Y., and Lee, G.Y. 2012. Effects of sterilization and cultivation temperatures of oak sawdust medium on Lentinula edodes hyphal growth. J. Korean For. Soc. 101, 77-82.
  15. Koo, C.D., Lee, S.J., and Lee, H.Y. 2013. Morphological characteristics of decomposition and browning of oak sawdust medium for ground bed cultivation of Lentinula edodes. Korean J. Mycol. 41, 85-90. https://doi.org/10.4489/KJM.2013.41.2.85
  16. Korea Forest Service. 2012. Statistical yearbook of forestry. 40, 1-494.
  17. Lacey, J. 1973. Actinomycetales: characteristics and practical Importance. pp. 231-251. In Sykes, G. and Skinner, F. (eds.), Academic Press, New York, USA.
  18. Lacey, J. 1997. Actinomycetes in composts. Ann. Agric. Environ. Med. 4, 113-121.
  19. Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester, England.
  20. Lee, B., Bak, W., Ka, K., Yoon, K., and Ryu, S. 2007. Harmful microorganisms occurred on the bed-logs of several Quercus spp. for shiitake cultivation. Korean J. Mycol. 35, 33-36. https://doi.org/10.4489/KJM.2007.35.1.033
  21. Miller, D.N., Bryant, J.E., Madsen, E.L., and Ghiorse, W.C. 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715-4724.
  22. Moore, D. and Chiu, S.W. 2001. Fungal products as food, pp. 1-17. In Pointing, S. and Hyde, K. (eds.), Bio-exploitation of filamentous fungi. Fungal Diversity press. Hong Kong, China.
  23. Nakamura, L.K., Blumenstock, I., and Claus, D. 1988. Taxonomic study of Bacillus coagulans hammer 1915 with a proposal for Bacillus smithii sp. nov. Int. J. Syst. Bacteriol. 38, 63-73. https://doi.org/10.1099/00207713-38-1-63
  24. Park, K.S. and Lee, B.L. 1997. Extraction and separation of proteinbound polysaccharide by Lentinus edodes. Korean J. Food Nutr. 10, 503-508.
  25. Park, W.C., Yoon, G.H., Kim, S.C., and Hong, G.S. 2008. New cultivation technology for sustainable production of Lentinula edodes. pp. 307. National Forest Research Institute. Seoul, Korea.
  26. Partanen, P., Hultman, J., Paulin, L., Auvinen, P., and Romantschuk, M. 2010. Bacterial diversity at different stages of the composting process. BMC Microbiol. 10, 94. https://doi.org/10.1186/1471-2180-10-94
  27. Pranamuda, H., Tokiwa, Y., and Tanaka, H. 1997. Polylactide degradation by an Amycolatopsis sp. Appl. Environ. Microbiol. 63, 1637-1640.
  28. Prażmo, Z., Dutkiewicz, J., and Cholewa, G. 2000. Gram-negative bacteria associated with timber as a potential respiratory hazard for woodworkers. Aerobiologia 16, 275-279. https://doi.org/10.1023/A:1007673107565
  29. Ryckeboer, J., Mergaert, J., Vaes, K., Klammer, S., Clercq, D., Coosemans, J., Insam, H., and Swings, J. 2003a. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol. 53, 349-410.
  30. Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K., and Swings, J. 2003b. Microbiological aspects of biowaste during composting in a monitored compost bin. J. Appl. Microbiol. 94, 127-137. https://doi.org/10.1046/j.1365-2672.2003.01800.x
  31. Sanchez, C. 2004. Modern aspects of mushroom culture technology. Appl. Microbiol. Biotechnol. 64, 756-762. https://doi.org/10.1007/s00253-004-1569-7
  32. Steger, K., Jarvis, Å., Vasara, T., Romantschuk, M., and Sundh, I. 2007. Effects of differing temperature management on development of Actinobacteria populations during composting. Res. Microbiol. 158, 617-624. https://doi.org/10.1016/j.resmic.2007.05.006
  33. Straatsma, G., Gerrits, J.P.G., Augustijn, M.P.A.M., Op Den Camp, H.J.M., Vogels, G.D., and Van Griensven, L.J.L.D. 1989. Population dynamics of Scytalidium thermophilum in Mushroom compost and stimulatory effects on growth rate and yield of Agaricus bisporus. Microbiology 135, 751-759. https://doi.org/10.1099/00221287-135-4-751
  34. Straatsma, G., Olijnsma, T.W., Gerrits, J.P.G., Griensven, L.J.L.D., Samson, R.A., and Op Den Camp, H.J.M. 1995. Bioconversion of cereal straw into mushroom compost. Can. J. Bot. 73, 1019-1024.
  35. Tamura, T., Ishida, Y., Otoguro, M., and Suzuki, K.I. 2010. Amycolatopsis helveola sp. nov. and Amycolatopsis pigmentata sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 60, 2629-2633. https://doi.org/10.1099/ijs.0.017871-0
  36. Tamura, K., Stecher, G., Paterson, D., Filipski, A., and Kumar, S. 2013. Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  37. Tang, J.C., Shibata, A., Zhou, Q., and Katayama, A. 2007. Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. J. Biosci. Bioeng. 104, 321-328. https://doi.org/10.1263/jbb.104.321
  38. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  39. Tokimoto, K. and Komatsu, M. 1979. Effect of carbon and nitrogen sources in media on the hyphal interference between Lentinus edodes and some species of Trichoderma. Japanese J. Phytopathol. 45, 261-264. https://doi.org/10.3186/jjphytopath.45.261
  40. Unaogu, I.C., Gugnani, H.C., and Lacey, J. 1994. Occurrence of thermophilic actinomycetes in natural substrates in Nigeria. Antonie van Leeuwenhoek. 65, 1-5. https://doi.org/10.1007/BF00878272
  41. Yassin, A.F. 2009. Saccharopolyspora rosea sp. nov., isolated from a patient with bronchial carcinoma. Int. J. Syst. Evol. Microbiol. 59, 1148-1152. https://doi.org/10.1099/ijs.0.005249-0
  42. Yu, H., Zeng, G., Huang, H., Xi, X., Wang, R., Huang, D., Huang, G., and Li, J. 2007. Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18, 793-802. https://doi.org/10.1007/s10532-007-9108-8