참고문헌
- P. Aiena, Fredholm and local spectral theory with applications to multipliers, Kluwer Acad. Publishers, (2004).
- M. Amouch, M. Berkani, On the property (gw), Mediterr. J. Math., 5(2008), 371-378. https://doi.org/10.1007/s00009-008-0156-z
- M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc., 130(2002), 1717-1723. https://doi.org/10.1090/S0002-9939-01-06291-8
- M. Berkani, A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Aust. Math. Soc., 76(2)(2004), 291-302. https://doi.org/10.1017/S144678870000896X
- M. Berkani, N. Castro-Gonzalez, Unbounded B-Fredholm operators on Hilbert spaces, Proc. of the Edinburg Math. Soc., 51(2008), 285-296.
- M. Berkani, J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged), 69(2003), 359-376.
- M. Berkani, H. Zariouh, Extended Weyl type theorems, Mathematica Bohemica, 134(4)(2009), 369-378.
- L. A. Coburn, Weyl's theorem for nonnormal operators, The Michigan Mathematical Journal, 13(3)(1966), 285-288. https://doi.org/10.1307/mmj/1031732778
- N. Dunford, Spectral theory I. Resolution of the identity, Pacific Journal of Math., 2(1952), 559-614. https://doi.org/10.2140/pjm.1952.2.559
- J. K. Finch, The Single Valued Extension Property on a Banach Space, Pacific Journal of Math., 58 1(1975), 61-69. https://doi.org/10.2140/pjm.1975.58.61
- W. Gongbao, M. Jipu, Spectral characterization of Hyponormal Weighted Shifts, arXiv preprint math/0302275, (2003).
- D. C. Lay, Spectral Analysis Using Ascent, Descent, Nullity and Defect, Math. Ann., 184(1970), 197-214. https://doi.org/10.1007/BF01351564
- V. Rakocevic, On a class of operators, Mat. Vesnik., 37(1985), 423-426.
- A. E. Taylor, D. C. Lay Introduction to Functional Analysis, Second Edition, New York, Wiley and sons, (1980).
- H. Weyl, Uber beschrankte quadatische Formen, deren Differenz Vollstetig ist, Rend. Circ. Mat. Palermo, 27(1909) 373-392. https://doi.org/10.1007/BF03019655
피인용 문헌
- Weyl type theorems for unbounded class- $$\mathcal {A}$$ A operators vol.28, pp.5-6, 2017, https://doi.org/10.1007/s13370-017-0479-7