References
- Y. Wu and E. J. Anthony, Investigation of sulphation behavior of two fly ashy samples produced from combustion of different fuels in a 654 MWe CFB boiler, Powder Tech., 208, 237-241 (2011). https://doi.org/10.1016/j.powtec.2010.12.012
- E. J. Anthony and D. L. Granatstein, Sulfation phenomena in fluidized bed combustion systems, Prog. Energy Combust. Sci., 27, 215-236 (2001). https://doi.org/10.1016/S0360-1285(00)00021-6
- Y. C. Bak, Sulfation Reaction kinetics of pulverized Korean Dolomite and limestone using Thermogravimetric Analyses, Energy Eng. J., 7, 216-222 (1998).
- K. Laursen, W. Duo, J. R. Grace, and J. Lim, Sulfation and reactivation characteristics of nine limestones, Fuel, 79, 153-163 (1999).
- S. K. Kang and M. K. Chung, Specific surface area and pore structure changes of calcined Lime withe calcination and sulfation reaction, Korean J. Sanit., 13, 19-29 (1998).
- S. V. Pisupati, R. S. Wasco, J. L. Morrison, and A. W. Scaroni, Sorbent behaviour in circulating fluidized bed combustors, Fuel, 75, 759-768 (1995).
- H. T. Jang and G. J. Lee, Analysis of calcination characteristics of Limestone in a fluidized bed reactor, J. Korea Ind. Eng. Chem., 11, 69-74 (2000).
- K. H. Han, J. I. Ryu, and G. T. Jin, Desulfurization characteristics of Domestic Anthracite by limestone at bench scale pressurized fluidized bed combustor, Trans. Korean Soc. Mech. Eng. B, 25, 1373-1383 (2001).
- S. R. Braganca and J. L. Castellan, FBC desulfurization process using coal with low sulfur content, high oxidizaing conditions and metamorphic limestones, Braz. J. Chem. Eng., 26, 375-383 (2009). https://doi.org/10.1590/S0104-66322009000200015
- F. Montagnaro, P. Salatino, and F. Scala, The influence of temperature o limestone sulfation and attrition under fluidized bed combustion conditions, Exp. Therm. Fluid Sci., 34, 352-358 (2010). https://doi.org/10.1016/j.expthermflusci.2009.10.013
- K. S. Lee, J. H. Jung, S. I. Keel, H. K. Lee, and S. S. Kim, Characteristics of CaCO3 sorbent particles for the In-Furnace desulfurization process: Effects of residence time and atmospheric condition, Trans. Korean Soc. Mech. Eng. B, 34, 121-127 (2010). https://doi.org/10.3795/KSME-B.2010.34.2.121
- F. Scala, R. Chirone, P. Meloni, G. Carcangiu, M. Manca, G. Mulas, and A. mulas, Fluidized bed desulfurization using lime obtained after slow calcination of limestone particles, Fuel, 114, 99-105 (2013). https://doi.org/10.1016/j.fuel.2012.11.072
- H. P. Kuo, H. Y. Tseng, A. N. Huang, and R. C. Hsu, A study of the ash production behavior of spent limestone powders in CFB, Adv. Powder Tech., 25, 472-475 (2014). https://doi.org/10.1016/j.apt.2013.04.014
- S. H. Lee, J. M. Lee, J. S. Kim, J. H. Choi, and S. D. Kim, Combustion characteristics of anthracie coal in the D CFB boiler, Hwahak Konghak, 38, 516-522 (2000).
- H. S. Jammulamadaka, H. B. Vuthaluru, D. H. French, and S. V. Pisupati, A study of Indian limestones for sulfur capture in FBC plants: Particle size sensitivity of sulfation behavior, Fuel, doi:10.1016/j.fuel.2015.06.049.
Cited by
- 순환유동층 보일러 로내 탈황을 위한 석회석 평가 vol.57, pp.6, 2015, https://doi.org/10.9713/kcer.2019.57.6.853
- Experimental study on calcination and fragmentation characteristics of limestone in fluidized bed vol.95, pp.None, 2015, https://doi.org/10.1016/j.joei.2021.01.014