References
- J. Y. Q. Wang, T. Wei, and Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater., 4, 1300816-1300859 (2014). https://doi.org/10.1002/aenm.201300816
- V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7, 1597-1614 (2014). https://doi.org/10.1039/c3ee44164d
- X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3, 839-855 (2011). https://doi.org/10.1039/c0nr00594k
- Y. Gogotsi, Energy storage wrapped up, Nature, 509, 568-570 (2014). https://doi.org/10.1038/509568a
- S. Zhang and N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5, 1401401-1401420 (2014).
- F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, and Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Adv., 3, 13059-13084 (2013). https://doi.org/10.1039/c3ra23466e
- M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science, 335, 1326-1330 (2012). https://doi.org/10.1126/science.1216744
- C. Cui, W. Qian, Y. Yu, C. Kong, B. Yu, L. Xiang, and F. Wei, Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V, J. Am. Chem. Soc., 136, 2256-2259 (2014). https://doi.org/10.1021/ja412219r
-
T. Zhai, F. Wang, M. Yu, S. Xie, C. Liang, C. Li, F. Xiao, R. Tang, Q. Wu, X. Lu, and Y. Tong, 3D
$MnO_2$ -graphene composites with large areal capacitance for high-performance asymmetric supercapacitors, Nanoscale, 5, 6790-6796 (2013). https://doi.org/10.1039/c3nr01589k - X. Wang, B. D. Myers, J. Yan, G. Shekhawat, V. Dravid, and P. S. Lee, Manganese oxide micro-supercapacitors with ultra-high areal capacitance, Nanoscale, 5, 4119-4122 (2013). https://doi.org/10.1039/c3nr00210a
- X. Zhang, H. Zhang, C. Li, K. Wang, X. Sun, and Y. Ma, Recent advances in porous graphene materials for supercapacitor applications, RSC Adv., 4, 45862-45884 (2014). https://doi.org/10.1039/C4RA07869A
- Y. Huang, J. Liang, and Y. Chen, An overview of the applications of graphen-based materials in supercapacitors, Small, 4, 1805-1834 (2012).
- Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Science, 332, 1537-1541 (2011). https://doi.org/10.1126/science.1200770
- C. Li and G. Shi, Three-dimensional graphene architectures, Nanoscale, 4, 5549-5563 (2012). https://doi.org/10.1039/c2nr31467c
- M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett., 8, 3498-3502 (2008). https://doi.org/10.1021/nl802558y
- X. Cao, Z. Yin, and H. Zhang, Three-dimensional graphene materials: preparation, structures and application in supercapacitors, Energy Environ. Sci., 7, 1850-1865 (2014). https://doi.org/10.1039/C4EE00050A
- A. Ambrosi, C. K. Chua, A. Bonanni, and M. Pumera, Electrochemistry of graphene and related materials, Chem. Rev., 114, 7150-7188 (2014). https://doi.org/10.1021/cr500023c
- M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like two-dimensional materials, Chem. Rev., 113, 3766-3798 (2013). https://doi.org/10.1021/cr300263a
- Y. Xu and G. Shi, Assembly of chemically modified graphene: methods and applications, J. Mater. Chem., 21, 3311-3323 (2011). https://doi.org/10.1039/C0JM02319A
- H. Bai, C. Li, X. Wang, and G. Shi, A pH-sensitive graphene oxide composite hydrogel, Chem. Commun., 46, 2376-2378 (2010). https://doi.org/10.1039/c000051e
- B. Hua, L. Chun, W. X. Lin, and S. G. Quan, On the gelation of graphene oxide, J. Phys. Chem., 115, 5545-5551 (2011). https://doi.org/10.1021/jp111308f
- O. C. Compton, Z. An, K. W. Putz, B. J. Hong, B. G. Hauser, L. C. Brinson, and S. T. Nguyen, Additive-free hydrogelation of graphene oxide by ultrasonication, Carbon, 50, 3399-3406 (2012). https://doi.org/10.1016/j.carbon.2012.01.061
- Y. Xu, Q. Wu, Y. Sun, H. Bai, and G. Shi, Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels, ACS Nano, 4, 7359-7362 (2010).
- H. P. Cong, X. C. Ren, P. Wang, and S. H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-aseembly process, ACS Nano, 6, 2693-2703 (2012). https://doi.org/10.1021/nn300082k
- H. Sun, Z. Xu, and C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels, Adv. Mater., 25, 2554-2560 (2013). https://doi.org/10.1002/adma.201204576
- S. Korkut, J. D. Roy-Mayhew, D. M. Dabbs, D. L. Milius, and I. A. Aksay, High surface area tapes produced with functionalized graphene, ACS Nano, 5, 5214-5222 (2011). https://doi.org/10.1021/nn2013723
- X. Yang, J. Zhu, L. Qiu, and D. Li, Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors, Adv. Mater., 23, 2833-2838 (2011). https://doi.org/10.1002/adma.201100261
- F. Liu and T. S. Seo, A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films, Adv. Funct. Mater., 20, 1930-1936 (2010). https://doi.org/10.1002/adfm.201000287
- M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher Jr., and T. F. Baumann, Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc., 132, 14067-14069 (2010). https://doi.org/10.1021/ja1072299
-
C. C. Ji, M. W. Xu, S. J. Bao, Z. J. Lu, C. J. Cai, H. Chai, R. Y. Wang, F. Yang, and H. Wei, Self-assembled three-dimensional interprenetrating porous graphene aerogels with
$MnO_2$ coating and their application as high-performance supercapacitors, New J. Chem., 37, 4199-4205 (2013). https://doi.org/10.1039/c3nj00599b - B. G. Choi, Y. S. Huh, W. H. Hong, D. Erickson, and H. S. Park, Electroactive nanoparticle directed assembly of functionalized graphene nanosheets into hierarchical structures with hybrid compositions for flexible supercapacitors, Nanoscale, 5, 3976-3981 (2013). https://doi.org/10.1039/c3nr33674c
- B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities, ACS Nano, 6, 4020-4028 (2012). https://doi.org/10.1021/nn3003345
-
B. G. Choi, S. J. Chang, Y. B. Lee, J. S. Bae, H. J. Kim, and Y. S. Huh, 3D heterostructured architectures of
$Co_3O_4$ nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries, Nanoscale, 4, 5924-5930 (2012). https://doi.org/10.1039/c2nr31438j - X. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C. Yu, and D. Zhao, Functional nanoporous graphene foams with controlled pore sizes, Adv. Mater., 24, 4419-4423 (2012). https://doi.org/10.1002/adma.201201680
- G. H. Moon, Y. Shin, D. Choi, B. W. Arey, G. J. Exarhos, C. Wang, W. Choi, and J. Liu, Catalytic templating approaches for three-dimensional hollow carbon/graphene oxide nano-architectures, Nanoscale, 5, 6291-6296 (2013). https://doi.org/10.1039/c3nr01387a
- L. Estevez, A. Kelarakis, Q. Gong, E. H. Da'as, and E. P. Giannelis, Multifunctional graphene/platinum/Nafion hybrids via ice templating, J. Am. Chem. Soc., 133, 6122-6125 (2011). https://doi.org/10.1021/ja200244s
-
Y. Q. Zhao, D. D. Zhao, P. Y. Tang, Y. M. Wang, C. L. Xu, and H. L. Li,
$MnO_2$ /graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy, Mater. Lett., 76, 127-130 (2012). https://doi.org/10.1016/j.matlet.2012.02.097 -
S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, Graphene oxide-
$MnO_2$ nanocomposites for supercapacitors, ACS Nano, 4, 2822-2830 (2010). https://doi.org/10.1021/nn901311t - S. Chen, J. Zhu, and X. Wang, One-step synthesis of graphene-cobalt hydroxide nanocomposites and their electrochemical properties, J. Phys. Chem., 114, 11829-11834 (2010).
-
Z. Ma, X. Hunag, S. Dou, J. Wu, and S. Wang, One-pot synthesis of
$Fe_2O_3$ nanoparticles on nitrogen doped graphene as advanced supercapacitor electrode materials, J. Phys. Chem., 118, 17231-17239 (2014). - K. Zhang, L. L. Zhang, X. S. Zhao, and J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem. Mater., 22, 1392-1401 (2010). https://doi.org/10.1021/cm902876u
-
S. Wu, W. Chen, and L. Yan, Fabrication of a 3D
$MnO_2$ /graphene hydrogel for high-peformance asymmetric supercapacitors, J. Mater. Chem. A, 2, 2765-2772 (2014). https://doi.org/10.1039/c3ta14387b -
H. Wang, H. Yi, X. Chen, and X. Wang, One-step strategy to three-dimensional graphene/
$VO_2$ nanobelt composite hydrogels for high performance supercapacitors, J. Mater. Chem. A, 2, 1165-1173 (2014). https://doi.org/10.1039/C3TA13932H -
L. Xie, F. Su, L. Xie, X. Li, Z. Liu, Q. Kong, X. Guo, Y. Zhang, L. Wan, K. Li, C. Lv, and C. Chen, Self-assembled 3D graphene-based aerogel with
$Co_3O_4$ nanoparticles as high-performance asymmetric supercapacitor electrode, Chem. Sus. Chem., 8, 2917-2926 (2015). https://doi.org/10.1002/cssc.201500355 - X. Zhu, P. Zhang, S. Xu, X. Yan, and Q. Xue, Free-standing three-dimensional graphene/manganese oxide hybrids as binder-free electrode materials for energy storage applications, ACS Appl. Mater. Interfaces, 6, 11665-11674 (2014). https://doi.org/10.1021/am5024258
-
G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, and Z. Bao, Solution-processed graphene/
$MnO_2$ nanostructured textiles for high-performance electrochemical capacitors, Nano Lett., 11, 2905-2911 (2011). https://doi.org/10.1021/nl2013828